Preview

Вестник Казахстанско-Британского технического университета

Расширенный поиск

КАТАЛИЗАТОРЫ ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА С ИСПОЛЬЗОВАНИЕМ ПАРОВОЙ КОНВЕРСИИ ЭТАНОЛА: ОБЗОР

Аннотация

Водород рассматривают в качестве топлива будущего, поскольку он является экологически чистым энергоносителем и играет важную роль в быстро развивающейся технологии различных топливных элементов. На сегодняшний день, 96% водорода получают из ископаемых источников, однако водород может быть получен в таком перспективном процессе зеленой химии, как паровая конверсия биовозобновляемого сырья, в первую очередь – этанола (ПКЭ). Широкое применение этой технологии сдерживают недостатки существующих катализаторов: несмотря на интенсивные исследования, на сегодняшний день не существует активных, селективных и стабильных рентабельных катализаторов трансформации биотоплив в синтез-газ и водород. Процесс ПКЭ детально изучен для катализаторов на основе переходных (Ni, Co, Cu) и благородных металлов (Pd, Pt, Rh, Ru). Катализаторы на основе благородных металлов показали высокую активность и селективность в процессе ПКЭ, однако их рентабельность остается под вопросом. Относительно недорогие и высокоактивные катализаторы на основе никеля и кобальта широко используются в процессе ПКЭ. Однако образование кокса и спекание активного компонента приводят к быстрой дезактивации катализаторов. За последние два десятилетия проведено множество исследований с целью повышения активности, селективности и стабильности катализаторов ПКЭ, а также определения механизма реакции. Этот обзор суммирует известные результаты исследований по разработке эффективного катализатора процесса ПКЭ на основе переходных металлов.

Об авторах

С. М. Наурзкулова
Таразский региональный университет им. М.Х. Дулати
Казахстан

докторант



Б. К. Масалимова
Таразский региональный университет им. М.Х. Дулати
Казахстан

к.х.н., доцент



М. В. Арапова
Институт катализа им. Борескова
Россия

к.н.

Новосибирск



Список литературы

1. V.A. Sadykov, O.V. Chub, Y.A. Chesalov, N.V.Mezentseva, S.N.Pavlova, M.V. Arapova, V.A. Rogov, M.N. Simonov, A.C. Roger, K.V.Parkhomenko, A.C.Van Veen. Mechanism of Ethanol Steam Reforming Over Pt/(Ni+Ru)-Promoted Oxides by FTIRS In Situ // Top Catal (2016) 59:1332–1342

2. Арапова М.В. Синтез и свойства Ni-содержащих катализаторов на основе сложных оксидов для процессов паровой конверсии этанола и глицерина // Диссертация 2017. с. 6-7

3. Shuhei Ogo, Yasushi Sekine. Recent progress in ethanol steam reforming using non-noble transition metalcatalysts: A review//Fuel Processing Technology 199 (2020) 106238

4. Badwal S.P.S., Giddey S., Kulkarni A., Goel J., Basu S. Direct ethanol fuel cells for transport and stationary applications – A comprehensive review // Applied Energy. – 2015. V. 145. – P. 80–103.

5. Wang W., Wang Y. Thermodynamic analysis of hydrogen production via partial oxidation of ethanol // International Journal of Hydrogen Energy. – 2008. – V.33. – P. 5035–5044.

6. de Lima S.M., da Cruz I. O., Jacobs G., Davis B. H., Mattos L. V., Noronha F. B. Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst // Journal of Catalysis. – 2008. – V.257. – P. 356–368.

7. Voldsund M., Jordal K., Anantharaman R. Hydrogen production with CO2 capture // International Journal of Hydrogen Energy. – 2016. – V. 41. – P. 4969-4992.

8. A. Haryanto, S. Fernando, N. Murali, S. Adhikari. Current status of hydrogenproduction techniques by steam reforming of ethanol: a review// Energy Fuel 19(2005) 2098–2106.

9. P.R. de la Piscina, N. Homs, Use of biofuels to produce hydrogen (reformation processes)// Chem. Soc. Rev. 37 (2008) 2459–2467.

10. N. Bion, D. Duprez, F. Epron. Design of nanocatalysts for green hydrogen production from bioethanol // ChemSusChem 5 (2012) 76–84.

11. S. Ogo, T. Shimizu, Y. Nakazawa, K. Mukawa, D. Mukai, Y. Sekine. Steam reforming of ethanol over K promoted Co catalyst//Appl. Catal. A Gen. 495 (2015) 30–38.

12. J.H. Song, S.J. Han, I.K. Song, Hydrogen production by steam reforming of ethanol over mesoporous Ni–Al2O3–ZrO2 catalysts// Catal. Surv. Jpn. 21 (2017) 114–129.

13. Y.C. Sharma, A. Kumar, R. Prasad, S.N. Upadhyay. Ethanol steam reforming for hydrogen production: latest and effective catalyst modification strategies to minimize carbonaceous deactivation// Renew. Sust. Energ. Rev. 74 (2017) 89–103.

14. P.D. Vaidya, A.E. Rodrigues. Insight into steam reforming of ethanol to produce hydrogen for fuel cells// Chem. Eng. J. 117 (2006) 39–49.

15. Zhong Z., Ang H., Choong C., Chen L., Huang L., Lin J. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming // Physical Chemistry Chemical Physics. – 2009. – V. 11. – P. 872–80.

16. González V.O.A., Reyes H.JA, Wang J.A., Chen L.F. Hydrogen production over Rh/Ce-MCM-41 catalysts via ethanol steam reforming // International Journal of Hydrogen Energy. – 2013. – V. 38. – P. 13914–25.

17. Pompeo F., Santori G., Nichio N.N. Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts // International Journal of Hydrogen Energy. – 2010. – V. 35. – P. 8912-8920.

18. de Rezende S.M., Franchini C.A., Dieuzeide M.L., de Farias A.M.D., Amadeo N., Fraga M.A. Glycerol steam reforming over layered double hydroxide-supported Pt catalysts // Chemical Engineering Journal. – 2015. – V. 272. – P. 108–118.

19. Aupretre F., Descorme C., Duprez D. Bio-ethanol catalytic steam reforming over supported metal catalyst // Catalysis Communications. – 2002. – V. 3. – P. 263–267

20. Galvita V., Belyaev V., Semikolenov V., Tsiakaras P., Frumin A., Sobyanin V. Ethanol decomposition over Pd-based catalyst in the presence of steam // Reaction Kinetics and Catalysis Letters. – 2002. – V. 76(2). – P. 343-351.

21. P. Huang, J. Kuo, S. Tsai, Y. Tsai. Evaporation analysis of different fuels in evaporator coil of steam reformer for stationary PEM fuel cell systems//Appl. ThermalEng. 128 (2018) 564–577.

22. J.Saupsor,N.Kasempremchit,P.Bumroongsakulsawat,P.Kim-Lohsoontorn,S.Wongsakulphasatch, W. Kiatkittipong, N. Laosiripojana, J. Gong, S.Assabumrungrat. Performance comparison among different multifunctional reactors operated under energy self-sufficiency for sustainable hydrogen production from ethanol//Int. J. Hydrog. Energy, in press, 2019.03.090.

23. A. Tripodi, E. Bahadori, G. Ramis, I. Rossetti. Feasibility assessment, process design and dynamic simulation for cogeneration of heat and power by steam reforming of diluted bioethanol// Int. J. Hydrog. Energy 44 (2019) 2–22.

24. A. Tripodi, A. Pizzonia, E. Bahadori, I. Rossetti. Integrated plant layout for heat and power cogeneration from diluted bioethanol, ACS Sustain// Chem. Eng. 6 (2018) 5358–5369.

25. Y.C. Sharma, A. Kumar, R. Prasad, S.N. Upadhyay. Ethanol steam reforming for hydrogen production: latest and effective catalyst modification strategies to minimize carbonaceous deactivation// Renew. Sust. Energ. Rev. 74 (2017) 89–103

26. D. Zanchet, J.B.O. Santos, S. Damyanova, J.M.R. Gallo, J.M.C. Bueno, Toward understanding metal-catalyzed ethanol reforming, ACS Catal. 5 (2015) 3841–3863.

27. G.Garbarino ,Ch.Wang,I.Valsamakis,S.Chitsazan, P.Riani, E.Finocchio, M.FlytzaniStephanopoulos, G.Busca. A study of Ni/Al2O3 and Ni–La/Al2O3 catalysts for the steam reform-ing of ethanol and phenol//Applied Catalysis B: Environmental Volumes 174–175, 2015, Pages 21-34

28. L. He, S. Hu, L. Jiang, G. Liao, L. Zhang, H. Han, X. Chen, Y. Wang, K. Xu, S. Su, J. Xiang, Coproduction of hydrogen and carbon nanotubes from the decomposition/ reforming of biomass-derived organics over Ni/α-Al2O3 catalyst:Performance of different compounds//Fuel 210 (2017) 307–314.

29. V.Sadykov, S. Pavlova, E.Smal, M. Arapova,M. Simonov, N. Mezentseva, V. Rogov, T. Glazneva,A. Lukashevich, A. Roger, K. Parkhomenko, A.Veen,O. Smorygo. Structured catalysts for biofuels transformation into syngas with active components based on perovskite and spinel oxides supported on Mg-doped alumina//Catalysis Today 293–294 (2017) 176–185

30. J.H. Song, S. Yoo, J. Yoo, S. Park, M.Y. Gim, T.H. Kim, I.K. Song, Hydrogen production by steam reforming of ethanol over Ni/Al2O3-La2O3 xerogel catalysts, Mol. Catal. 434 (2017) 123–133.

31. Elias K.F.M., Lucrédio A.F., Assaf E.M. Effect of CaO addition on acid properties of Ni–Ca/ Al2O3 catalysts applied to ethanol steam reforming // International Journal of Hydrogen Energy. – 2013. – V. 38. – P. 4407–4417.

32. Muroyama, H., Nakase, R., Matsui, T., & Eguchi, K. Ethanol steam reforming over Ni-based spinel oxide,International Journal of Hydrogen Energy (2010), 35, 1575–1581.

33. A. Di Michele, A. Dell’Angelo, A. Tripodi, E. Bahadori,F. Sa`nchez, D. Motta, N. Dimitratos, Rossetti, G. Ramis, Int. J. Steam reforming of ethanol over Ni/MgAl2O4 catalysts // Hydrogen Energy 2019, 44 (2), 952–964.

34. M. Nu~nez Meireles, J.A. Alonso, M.T. Fern_andez Díaz, L.E. Cadús, F.N. Aguero. Ni particles generated in situ from spinel structures used in ethanol steam reforming reaction// Materials Today Chemistry 15 (2020) 100213

35. J. Calles, A.Carrero, A. Vizcaíno and M.Lindo. Effect of Ce and Zr Addition to Ni/SiO2 Catalysts for Hydrogen Production through Ethanol Steam Reforming//Catalysts 2015, 5, 58-76.

36. S. Mhadmhan, P. Natewong, N. Prasongthum, C. Samart, P. Reubroycharoen,Investigation of Ni/ SiO2 fiber catalysts prepared by different methods on hydrogenproduction from ethanol steam reforming//Catalysts 8 (2018) 319.

37. N. Prasongthum, R. Xiao, H. Zhang, N. Tsubaki, P. Natewong, P. Reubroycharoen. Highly active and stable Ni supported on CNTs-SiO2 fiber catalysts for steam reforming of ethanol// Fuel Process. Technol. 160 (2017) 185–195.

38. G. T. Wurzler, R. C. Rabelo-Neto, L. V. Mattos, M. A. Fraga, F. B. Noronha. Steam reforming of ethanol for hydrogen production over MgO—supported Ni-based catalysts// Appl. Catal., A 2016, 518, 115–128.

39. M. Chen, Y. Wang, Z. Yang, T. Liang, S. Liu, Z. Zhou, X. Li. Effect of Mg-modified mesoporous Ni/Attapulgite catalysts on catalytic performance and resistance to carbon deposition for ethanol steam reforming //Fuel 2018, 220, 32–46.

40. W. Mulewa, M. Tahir, N.A.S. Amin, MMT-supported Ni/TiO2 nanocomposite for low temperature ethanol steam reforming toward hydrogen production// Chem. Eng. J. 326 (2017) 956–969.

41. S. Bepari, S. Basu, N.C. Pradhan, A.K. Dalai. Steam reforming of ethanol over cerium-promoted Ni-Mg-Al hydrotalcite catalysts// Catal. Today 291 (2017) 47–57.

42. M.Greluka, M.Rotkoa, S.Turczyniak-Surdackab. Comparison of catalytic performance and coking resistant behaviors of cobaltand nickel based catalyst with different Co/Ce and Ni/Ce molar ratio under SRE conditions// Applied Catalysis A, General 590 (2020) 117334.

43. F. Menegazzo, C. Pizzolitto, D. Zanardo, M. Signoretto, C. Buysschaert, G. Beny,A. Di Michele. Hydrogen production by ethanol steam reforming on Ni-based catalysts: effect of the support and of CaO and Au doping// Chemistry Select 2(2017) 9523–9531

44. M.Greluka, M.Rotkoa, S.Turczyniak-Surdackab, Enhanced catalytic performance of La2O3 promoted Co/CeO2 and Ni/CeO2 catalysts for effective hydrogen production by ethanol steam reforming// Renewable Energy Volume 155, August 2020, Pages 378-395

45. C. Pizzolitto, F. Menegazzo, E. Ghedini, G. Innocenti, A. Di Michele, G. Cruciani,F. Cavani, M. Signoretto. Increase of ceria redox ability by lanthanum addition onNi based catalysts forhydrogen production// ACS Sustain. Chem. Eng. 6 (2018)13867–13876.

46. T. S. Rodrigues, A. B. L. de Moura, F. A. e Silva, E. G. Candido, A. G. M. da Silva, D.C. de Oliveira, J. Quiroz, P. H. C. Camargo, V. S. Bergamaschi, J. C. Ferreira, M.Linardi, F. C. Fonseca. Ni supported Ce0.9Sm0.1O2-δ nanowires: an efficient catalyst for ethanol steam reforming for hydrogen production. Fuel, Volume 237, 1 February 2019, Pages 1244-1253

47. R. Wu, C. Tang, H. Huang, C. Wang, M. Chang, C. Wang. Effect of boron doping and preparation method of Ni/Ce0.5Zr0.5O2 catalysts on the performance for steam reforming of ethanol //Int. J. Hydrog. Energy 44 (2019) 14279–14289.

48. J.-Y. Liu, C.-C. Lee, C.-H. Wang, C.-T. Yeh, C.-B. Wang Application of nickel-lanthanum oxide on the steam reforming of ethanol to produce hydrogen// Int. J. Hydrogen Energy 2010, 35 (9), 4069–4075.

49. J. Shao, G. Zeng, Y. Li. Effect of Zn substitution to a LaNiO3-δ perovskite structured catalyst in ethanol steam reforming// Int. J. Hydrog. Energy 42 (2017) 17362–17375.

50. Arapova M. V., Pavlova S. N., Rogov V. A., Krieger T. A., Ishchenko A.V., Roger A.-C. Ni(Co)Containing Catalysts Based on Perovskite-Like Ferrites for Steam Reforming of Ethanol // Catalysis for Sustainable Energy – 2014. V. 1. P. 10–20.

51. Siao-Wun Liu, Jyong-Yue Liu, Ying-Huei Liu, Yu-Hsung Huang, Chuin-Tih Yeh, Chen-Bin Wang. Ultrasonic-assisted fabrication of LaNiOx composite oxide nanotubes andтapplication to the steam reforming of ethanol// Catalysis Today 164 (2011) 246–250

52. V. Sadykov, L. Bobrova, S. Pavlova, V. Simagina, L. Makarshin, V. Parmon, J.R.H. Ross, A.C. Van Veen, C. Mirodatos. Syngas Generation from Hydrocarbons and Oxygenates with Structured Catalysts Series Energy Science, Engineering and Technology//Nova Science Publishers, Inc, New York, 2012 140 p.

53. V. Sadykov, N. Mezentseva, M. Simonov, E. Smal, M. Arapova, S. Pavlova, Y. Fedorova, O. Chub, L. Bobrova, V. Kuzmin, A. Ishchenko, T. Krieger, A.-C. Roger, K. Parkhomenko, C. Mirodatos, O. Smorygo, J. Ross. Structured nanocomposite catalysts of biofuels transformation into syngas and hydrogen: Designand performance// Int. J. Hydrogen Energy 40 (2015) 7511–7522.

54. V.A. Sadykov, S.N. Pavlova, G.M. Alikina, N.N. Sazonova, N.V. Mezentseva,M.V. Arapova, V.A. Rogov, T.A. Krieger, A.V. Ishchenko, R.V. Gulyaev,A.V. Zadesenets, A.-C. Roger, C.E. ChanThaw, O.L. Smorygo. Perovskite-basedcatalysts for transformation of natural gas and oxygenates into syngas, in:J. Zhang, H. Li (Eds.), Perovskite: Crystallography, Chemistry and Catalytic Performance//Nova Science Publishers, Inc, New York, 2013, pp. 1–58.

55. A Ishihara, A. Andou, T. Hashimoto, H Nasu.Steam reforming of ethanol using novel carbon-oxide composite-supported Ni, Co and Fe catalysts// Fuel Processing Technology 197 (2020) 106203

56. A. Tripodi, M. Compagnoni, E. Bahadori, E. Bahadori, I. Rossetti, G. Ramis. Process intensification by exploiting diluted 2nd generation bioethanol in the low-temperature steam reforming process// Top. Catal. 61 (2018) 1832–1841.

57. Y. Li, Zh.Zhang, P.Jia, D. Dong, Y.Wang, S.Hu, J. Xiang, Q. Liu, X.Hu, Ethanol steam reforming over cobalt catalysts: Effect of a range of additives on the catalytic behaviors // Journal of the Energy Institute 93 (2020) 165-184.

58. A. Kazama, Y. Sekine, K. Oyama, M. Matsukata, E. Kikuchi, Promoting effect ofsmall amount of Fe addition onto Co catalyst supported on α-Al2O3 for steam reforming of ethanol, Appl. Catal. A Gen. 383 (1–2) (2010) 96–101.

59. Y. Sekine, Y. Nakazawa, K. Oyama, T. Shimizu, S. Ogo. Effect of small amount of Fe addition on ethanol steam reforming over Co/Al2O3 catalyst, Appl. Catal. A Gen.472 (2014) 113–122.

60. H. Sohn, G. Celik, S. Gunduz, D. Dogu, S. Zhang, J. Shan, F.F. Tao, U.S. Ozkan.Oxygen mobility in pre-reduced nanoand macro-ceria with co loading: an APXPS, in-situ DRIFTS and TPR study//Catal. Lett. 147 (2017) 2863–2876

61. M. Greluk, M. Rotko, G. Słowik, S. Turczyniak-Surdacka. Hydrogen production by steam reforming of ethanol over Co/CeO2 catalysts: effect of cobalt content// J.Energy Inst. 92 (2019) 222–238.

62. W. Gac, M. Greluk, G. Słowik, S. Turczyniak-Surdacka. Structural and surface changes of cobalt modified manganese oxide during activation and ethanol steam reforming reaction// Appl. Surf. Sci. 440 (2018) 1047–1062.

63. J.F. da Costa-Serra, A. Chica, Catalysts based on Co-Birnessite and Co-Todorokite for the efficient production of hydrogen by ethanol steam reforming// Int. J.Hydrog. Energy 43 (2018) 16859–16865

64. M. Chen, C. Wang, Y. Wang, Z. Tang, Z. Yang, H. Zhang, J. Wang, Hydrogen production from ethanol steam reforming: effect of Ce content on catalytic performance of Co/Sepiolite catalyst, Fuel 247 (2019) 344–355.

65. H. Sohn, G. Celik, S. Gunduz, D. Dogu, S. Zhang, J. Shan, F.F. Tao, U.S. Ozkan, Oxygen mobility in pre-reduced nanoand macro-ceria with co loading: an APXPS, in-situ DRIFTS and TPR study// Catal. Lett. 147 (2017) 2863–2876.

66. А. Casanovas, M. Roig, C.de Leitenburg А.Trovarelli, J. Llorca. Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni,Cu, Cr and Na. //International Journal of Hydrogen Energy (2010)35, 7690–7698

67. A.J.Vizcaíno, A. Carrero, J.A.Calles.Comparison of ethanol steam reforming using Co and Ni catalysts supported on SBA-15 modified by Ca and Mg//Fuel Processing Technology Volume 146, 1 June 2016, Pages 99-109

68. M.V. Arapova, S.N. Pavlova, V.A.Rogov, T. A.Krieger, A.V.Ishchenko, A. C.Roger Ni(Co)containing catalysts based on perovskitelike ferrites for steam reforming of ethanol //Catal. Sustain. Energy 2014; Volume 2: 10–20

69. C. Cerda-Moreno, J.F. da Costa-Serra, A. Chica. Co and La supported on Zn-Hydrotalcitederived material as efficient catalyst for ethanol steam reforming// Int.J. Hydrog. Energy 44 (2019) 12685–12692

70. S. Ogo, S.Maeda, Y.Sekine. Coke Resistance of Sr-Hydroxyapatite Supported Co Catalyst for Ethanol Steam Reforming// Chem. Lett. 2017, 46, 729–732

71. L. Río, I. López, G. Marbán. Stainless steel wire mesh-supported Co3O4 catalysts in the steam reforming of ethanol//Applied Catalysis B: Environmental ,Volumes 150–151, 5 May 2014, Pages 370-379

72. M. Li, G.Chang Wang,Ethanol Reaction on Co3O4(110) and Co(0001): A Microkinetic Model Analysis// The Journal of Physical Chemistry C 2016 120 (49), 28110-28124

73. B.Subkwak, G.Lee,S.Park,M.Kang. Effect of MnOx in the catalytic stabilization of Co2MnO4 spinel during the ethanol steam reforming reaction//Applied Catalysis A: General Volume 503, 25 August 2015, Pages 165-175

74. Banach B, MacHocki A, Rybak P, Denis A, Grzegorczyk W,Gac W. Selective production of hydrogen by steam reforming of bio-ethanol// Catal Today 2011;176(1):28-35.

75. E.Moretti, L.Storaro, A.Talon, S.Chitsazan, G.Garbarino, G.Busca, E.Finocchio, Ceria–zirconia based catalysts for ethanol steam reforming// Fuel,Volume 153, 1 August 2015, Pages 166-175

76. A. Rodriguez-Gomez, A. Caballero. Bimetallic Ni-Co/SBA-15 catalysts for reforming of ethanol: how cobalt modifies the nickel metal phase and product distribution//Mol. Catal. 449 (2018) 122–130.

77. T. Nejat, P. Jalalinezhad, F. Hormozi, Z. Bahrami, Hydrogen production fromsteam reforming of ethanol over Ni-Co bimetallic catalysts and MCM-41 as support// Inst. Chem. Eng. 97 (2019) 216–226.

78. N. Pinton, M. V. Vidal, M. Signoretto, A. Martinez-Arias, V. C. Corberan. Ethanol steam reforming on nanostructured catalysts of Ni, Co and CeO2: influence of synthesis method on activity, deactivation and regenerability// Catal. Today 296(2017) 135–143

79. A.D. Shejale, G.D. Yadav, Cu promoted Ni-Co/hydrotalcite catalyst for improved hydrogen production in comparison with several modified Ni-based catalysts via steam reforming of ethanol, Int. J. Hydrog. Energy 42 (2017) 11321.


Рецензия

Для цитирования:


Наурзкулова С.М., Масалимова Б.К., Арапова М.В. КАТАЛИЗАТОРЫ ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА С ИСПОЛЬЗОВАНИЕМ ПАРОВОЙ КОНВЕРСИИ ЭТАНОЛА: ОБЗОР. Вестник Казахстанско-Британского технического университета. 2020;17(4):71-89.

For citation:


Naurzkulova S., Massalimova B., Arapova V. CATALYSTS FOR HYDROGEN PRODUCTION USING THE ETHANOL STEAM CONVERSION: A REVIEW. Herald of the Kazakh-British technical university. 2020;17(4):71-89. (In Kazakh)

Просмотров: 565


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)