Preview

Herald of the Kazakh-British Technical University

Advanced search

DETERMINATION OF RESIST CONTRAST IN ELECTRON BEAM LITHOGRAPHY UNDER DEPTH-DEPENDENT NONUNIFORM ENERGY DEPOSITION

https://doi.org/10.55452/1998-6688-2025-22-3-280-289

Abstract

The paper presents an analytical model for determining the resist contrast in electron lithography with nonuniform deposited energy over the depth, which is typical for low-energy electron exposure. In the classical approach, the contrast is determined from the logarithmic dependence of the residual resist thickness on the exposure dose and assumes the homogeneity of the deposited energy over the layer depth, which leads to an overestimation of the contrast value in the presence of a gradient of the deposited energy. The proposed model takes into account the linear change in the energy profile in the resist, which is neglected in existing generally accepted model, thus allowing us to extract the "true" contrast value reflecting the resist properties under given development conditions. To validate the model, experiments were carried out with an ELP-20 resist 200 nm thick on silicon substrates at an electron beam energy of 5, 15 and 25 keV. Dose wedges were exposed for each energy, followed by development and topography analysis by atomic force microscopy. By fitting the model curves to the experimental dependence of the residual resist thickness on the exposure dose for each electron energy, the values of the contrast and the parameter characterizing the gradient of the deposited energy by depth were calculated. In this case, the contrast remains almost constant when varying the energy of incident electrons and has an average value of γ = 1.67. Thus, the increase in contrast with a decrease in the electron energy observed within the classical approach should be considered as an artifact of the model used. The proposed model is applicable for precision calibration of the processes of forming three-dimensional resist structures using the grayscale lithography.

About the Authors

M. M. Muratov
Al-Farabi Kazakh National University
Kazakhstan

PhD, Associate Professor

Almaty



S. I. Zaitsev
Institute of Microelectronics Technology and High Purity Materials RAS
Russian Federation

Dr.Phys.-Math.Sc., Professor 

142432 Chernogolovka, Moscow region



M. I. Pshikov
Al-Farabi Kazakh National University
Kazakhstan

PhD, Assistant Professor

Almaty



N. R. Guseinov
Al-Farabi Kazakh National University
Kazakhstan

Master's degree

Almaty



R. R. Nemkayeva
Al-Farabi Kazakh National University
Kazakhstan

Master's degree

Almaty



Ye. S. Mukhametkarimov
Al-Farabi Kazakh National University
Kazakhstan

PhD, Associate Professor

Almaty



Zh. K. Tolepov
Al-Farabi Kazakh National University
Kazakhstan

PhD

Almaty



D. S. Akhmetsadyk
Al-Farabi Kazakh National University
Kazakhstan

PhD student 

Almaty



References

1. Flodgren, V., Das, A., Sestoft, J.E., Löfström, N., Alcer, D., Jeddi, H., Borgström, M.T., Pettersson, H., Nygård J. and Mikkelsen A. Flexible fabrication of aligned multi-nanowire circuits for on-chip prototyping. Microelectronic Engineering, 300, article 112363 (2025). https://doi.org/10.1016/j.mee.2025.112363.

2. Pan, Y. and Xu, K. Recent progress in nano-electronic devices based on EBL and IBL. Current Nanoscience, 16 (2), 157–169 (2020). https://doi.org/10.2174/1573413715666190701111638.

3. Sahoo, P.K., Coates, E., Silver, C.D., Li, K., and Krauss, T.F On the reproducibility of electron-beam lithographic fabrication of photonic nanostructures. Scientific Reports, 14, article 8703 (2024). https://doi.org/10.1038/s41598-024-58842-w.

4. Chen, Y., Zhang, H., Zhang, Z., Zhu, X., and Fang, Z. Dual views of plasmonics: from near-field optics to electron nanoscopy. Photonics Insights, 4 (2), article R04 (2025). https://doi.org/10.3788/PI.2025.R04.

5. Bakar, R.A., Hassan, H., and Herman, S.H. Patterning of monolithic integrated circuit using electron beam lithography. Proc. of the 2023 IEEE 13th International Conf. on System Engineering and Technology (ICSET), (Shah Alam, Malaysia, 2 October, 2023), pp. 319–323. https://doi.org/10.1109/ICSET59111.2023.10295127.

6. Ko, T., Kumar, S., Shin, S., Seo, D., and Seo, S. Colloidal quantum dot nanolithography: direct patterning via electron beam lithography. Nanomaterials, 13 (14), article 2111 (2023). https://doi.org/10.3390/nano13142111.

7. Chen, Y. Nanofabrication by electron beam lithography and its applications: a review. Microelectronic Engineering, 135, 57–72 (2015). https://doi.org/10.1016/j.mee.2015.02.042.

8. Yasar, F., Muller, R.E., Khoshakhlagh, A., and Keo, S.A. Large-area fabrication of nanometer-scale features on GaN using e-beam lithography. Journal of Vacuum Science & Technology B, 42, article 022801 (2024). https://doi.org/10.1116/6.0003270.

9. Zheng, X., Calò, A., Albisetti, E., et al. Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. Nature Electronics, 2, 17–25 (2019). https://doi.org/10.1038/s41928-018-0191-0.

10. Hudek, P., Jurkovic, M., Choleva, P., Wroczewski, W., Hashimoto, M., Ono, K., Fukui, T., Takahashi, T., and Takahashi, K. Multi-beam mask writer exposure optimization for EUV mask stacks. Journal of Micro/Nanopatterning, Materials, and Metrology, 20 (4), article 041402 (2021). https://doi.org/10.1117/1.JMM.20.4.041402.

11. Baracu, A.M., Avram, M.A., Breazu, C., Bunea, M.-C., Socol, M., Stanculescu, A., Matei, E., Thrane, P.C.V., Dirdal, C.A., Dinescu A. and Rasoga O. Silicon metalens fabrication from electron beam to UVnanoimprint lithography. Nanomaterials, 11 (9), article 2329 (2021). https://doi.org/10.3390/nano11092329.

12. Khonina, S.N., Kazanskiy, N.L., and Butt, M.A. Grayscale lithography and a brief introduction to other widely used lithographic methods: a state-of-the-art review. Micromachines, 15 (11), article 1321 (2024). https://doi.org/10.3390/mi15111321.

13. Massari, M., Ruffato, G., Gintoli, M., Ricci, F., and Romanato, F. Fabrication and characterization of high-quality spiral phase plates for optical applications. Applied Optics, 54 (13), 4077–4083 (2015). https://doi.org/10.1364/AO.54.004077.

14. Grushina, A. Direct-write grayscale lithography. Advanced Optical Technologies, 8 (3–4), 163–169 (2019). https://doi.org/10.1515/aot-2019-0024.

15. Li, K., Li, J., Reardon, C., Schuster, C.S., Wang, Y., Triggs, G.J., Damnik, N., Müenchenberger, J., Wang, X., Martins, E.R., and Krauss, T.F. High speed e-beam writing for large area photonic nanostructures – a choice of parameters. Scientific Reports, 6, article 32945 (2016). https://doi.org/10.1038/srep32945.

16. Zaitsev, S., Knyazev, M., Dubonos, S., and Bazhenov, A. Fabrication of 3D photonic structures. Microelectronic Engineering, 73–74, 383–387 (2004). https://doi.org/10.1016/j.mee.2004.02.074.

17. Svintsov, A.A., Knyazev, M.A., and Zaitsev, S.I. Calculation of the absorbed electron energy 3D distribution by the Monte Carlo method, presentation of the proximity function by three parameters α, β, η and comparison with the experiment. Materials, 15, article 3888 (2022). https://doi.org/10.3390/mi14112060.

18. Knyazev, M.A., Dubonos, S.V., Svintsov, A.A., and Zaitsev, S.I. Fast electron resist contrast determination by “fitting before measurement” approach. Microelectronic Engineering, 84 (5–8), 1080–1083 (2007). https://doi.org/10.1016/j.mee.2007.01.145.

19. Myrzabekova, M.M., Guseinov, N.R., Zaitsev, S.I., Shabelnikova, Ya.L., Muratov, M.M., Muradova, S.R., and Turarbaeva, T.B. Study of the electron lithography parameters by AFM. Recent Contributions to Physics, 68 (1), 81–90 (2019). https://doi.org/10.26577/RCPh-2019-1-1112.

20. Gangnaik, A.S., Georgiev, Y.M., and Holmes, J.D. New Generation Electron Beam Resists: A Review. Chemistry of Materials, 29 (5) (2017). https://doi.org/10.1021/acs.chemmater.6b03483.

21. Jin, Y., Moreno, M., Vianez, P.M.T., Tan, W.K., Griffiths, J.P., Farrer, I., Ritchie, D.A., and Ford, C.J.B. Microscopic metallic air-bridge arrays for connecting quantum devices. Applied Physics Letters, 118, article 162108 (2021). https://doi.org/10.1063/5.0045557.

22. Rogozhin, A.E., and Sidorov, F.A. E-beam lithography simulation techniques. Russian Microelectronics, 49 (2), 108–122 (2020). https://doi.org/10.1134/S1063739720010096.

23. Tabata, T. Theoretical evaluation of absorbed doses in materials irradiated by low-energy electron beams: a short review. Bulletin of University of Osaka Prefecture, Series A, 44 (1), 41–46 (1995). https://doi.org/10.24729/00008333.

24. Ed. P.W. Hawkes, Advances in Imaging and Electron Physics (Academic Press, 1998).

25. Ed. P. Rai-Choudhury, Handbook of Microlithography, Micromachining and Microfabrication, Chapter 2 (SPIE, 1997).

26. Asmussen, F., and Ueberreiter, K. Velocity of dissolution of polymers. Part II. Journal of Polymer Science, 57, 199–208 (1962). https://doi.org/10.1002/pol.1962.1205716516.

27. Bernstein, G.H., Hill, D.A., and Liu, W.-P. New high-contrast developers for poly(methyl methacrylate) resist. Journal of Applied Physics, 71, 4066–4075 (1992). https://doi.org/10.1063/1.350831.

28. Moreau, W.M. Semiconductor Lithography: Principles, Practices, and Materials (Springer Science & Business Media, 2012).

29. Moreau, W.M. Semiconductor Lithography: Principles, Practices, and Materials, part II (Mir, 1990, in Russ.).


Review

For citations:


Muratov M.M., Zaitsev S.I., Pshikov M.I., Guseinov N.R., Nemkayeva R.R., Mukhametkarimov Ye.S., Tolepov Zh.K., Akhmetsadyk D.S. DETERMINATION OF RESIST CONTRAST IN ELECTRON BEAM LITHOGRAPHY UNDER DEPTH-DEPENDENT NONUNIFORM ENERGY DEPOSITION. Herald of the Kazakh-British Technical University. 2025;22(3):280-289. https://doi.org/10.55452/1998-6688-2025-22-3-280-289

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)