ALGEBRAIC CHARACTERISTICS OF THE CRITERION OF COMPLETENESS OF A CLASS OF ALGEBRAIC SYSTEMS
https://doi.org/10.55452/1998-6688-2023-20-2-43-48
Abstract
In many sources on model theory, in addition to the proven properties about classes of algebraic systems, the characteristics of these properties are given in algebraic terms, that is, they show the nature of these properties from the perspective of universal algebra. For example, the class of quasi-varieties or varieties is defined using model-theoretic concepts, fulfillment of quasi-identities or identities, and in algebraic concepts of closedness with respect to direct products, ultraproducts, fulfillment of locality, closedness with respect to homomorphisms. H.J. Keisler gave an algebraic characterization of the criterion for the axiomatizability of a class of algebraic systems, using the closure of the class under the ultraproduct and isomorphism of algebraic systems, as well as the closure under ultrapowers to complement the class. H.J. Keisler, however, does not give any algebraic characterization of the criterion for completeness of a class of algebraic systems.In this article, an algebraic characterization of the completeness criterion for a class of algebraic systems is obtained. For comparison, it is not possible to give an algebraic description of the criterion for the model completeness of a class, in terms used in the article. This shows that the algebraic nature of complete and model complete classes is somewhat different.
About the Authors
A. KasatovaKazakhstan
Kasatova Aida, Head of department
Gogol st., 40, 100000, Karagandy
A. Kabidenov
Kazakhstan
Kabidenov Anuar, PhD
st. Kazhymukan, 13, 010008, Astana
M. Bekenov
Kazakhstan
Bekenov Mahsut Iskanderuly, Professor of the Algebra and Geometry Department
st. Kazhymukan 13, 010008, Astana
References
1. Tarski A., Vaugt R.L. (1957) Arithmetical extensions of relational systems. Compositio math, 13, pp. 81–102.
2. Robinson A. (1956) Complete Theories. Amsterdam, North-Holland.
3. Mal'cev A.I. (1970) Algebraicheskie sistemy (in Russian).
4. Kejsler H.Dzh., Chjen K.K. (1977) Teorija modelej (in Russian).
5. Keisler H.J. Ultraproducts and elementary classes. Koninkl. Ned. Akad. Wetensch. Proc., Ser. A, 64, Indag.Math. 23, pp. 477–495.
6. Bekenov M.I. (2016) Nekotorye svojstva jelementarnoj vlozhimosti v teorii modelej, Sib. zhurn. chist. i prikl. matem., 6:4, pp. 13–16 (in Russian); 2018 J. Math. Sci. 230:1, pp. 10–13.
7. Bekenov M.I. (1982) O spektre kvazitranscendentnyh teorij, Algebra i logika, 21:1, pp. 3–12 (in Russian).
8. Bekenov M.I. (2010) Klassy podobija otnositel'no jelementarnoj vlozhimosti modelej teorii, pp.174–176 (in Russian).
9. Bekenov M.I., Nurakunov A.M. (2021) Polugruppa teorij i ee reshetka idempotentnyh jelementov, Algebra i logika, 60:1, pp. 3–22 (in Russian); Algebra and Logic, 2021, 60:1, pp. 1–14.
10. Sacks G. (1972) Saturated Model Theory, N.Y. Benjamin.
11. Vaught R.L. (1954) Applications Lowenheim-Skolem theorem to problems of completeness and decidability, Indag. Math., 16, pp. 467–472.
12. Morley M. (1965) Categoricity in power, Trans. Amer. Math. Soc., 114, pp. 514–538.
13. Jeklof P. Teorija ul'traproizvedenij dlja algebraistov, Spravochnaja kniga po matematicheskoj logike, vol.1, l.3 (in Russian).
14. Barvajs Dzh. (1982) Teorija modelej, Spravochnaja kniga po matematicheskoj logike, vol. 1 (in Russian).
15. Ershov Ju.L., Lavrov I.A., Tajmanov A.D., Tajclin M.A. (1965) Jelementarnye teorii, UMN, 20:4 (124), pp. 37–108 (in Russian).
16. Bekenov M.I. (2018) Properties of elementary embeddability in model theory, Journal of Mathematical Sciences, vol. 230, issue 1, pp. 10–13.
Review
For citations:
Kasatova A., Kabidenov A., Bekenov M. ALGEBRAIC CHARACTERISTICS OF THE CRITERION OF COMPLETENESS OF A CLASS OF ALGEBRAIC SYSTEMS. Herald of the Kazakh-British technical university. 2023;20(2):43-48. (In Russ.) https://doi.org/10.55452/1998-6688-2023-20-2-43-48