Preview

Herald of the Kazakh-British technical university

Advanced search

SOLVABILITY OF A BOUNDARY VALUE PROBLEM OF THE SAMARSKY-IONKIN TYPE FOR DIFFERENTIAL EQUATIONS WITH INVOLUTION

https://doi.org/10.55452/1998-6688-2025-22-1-173-183

Abstract

In this paper, we investigate a non-local boundary value problem for a second-order differential equation with an involutive transformation. The aim of this work is to apply the parametrization method developed by Professor D. Dzhumabayev to study the solvability of non-local boundary value problems in the context of differential equations with involutive transformations. It is known that the Cauchy problem for such equations may not have a unique solution. Therefore, parameters μ1= y(½), μ2= y′(½) are introduced, and variables y(x)=u(x)+μ12(x-1/2) are replaced. The parameter values are determined at the midpoint of the interval, which guarantees the existence of a unique solution for the Cauchy problem of the original equation. The performed variable substitution formally divides the problem into two components: the Cauchy problem for the initial equation and a system of linear equations with respect to the introduced parameters. By solving the Cauchy problem and substituting its solution into the boundary conditions, one can obtain a system of linear equations with respect to the parameters. If the matrix of this system is invertible, then the problem has a unique solution. In the case when the matrix is non-invertible, two scenarios are possible: either the boundary value problem is unsolvable, or it has multiple solutions. For the second case, the paper defines the eigenvalues and solvability conditions of the boundary value problem.

About the Authors

K. I. Usmanov
Akhmet Yassawi International Kazakh-Turkish University
Kazakhstan

 Cand. Phys.-Math.Sc., Associate Professor 

 Turkistan 



K. Zh. Nazarova
Akhmet Yassawi International Kazakh-Turkish University
Kazakhstan

 Cand. Phys.-Math.Sc., Associate Professor 

 Turkistan 



Zh. Тurganbaeva
Akhmet Yassawi International Kazakh-Turkish University
Kazakhstan

 PhD 

 Turkistan 



References

1. Kozhanov A.I., Bzheumihova O.I. (2024) Sobstvennye funkcii i sobstvennye chisla differencial'nyh uravnenij s involjuciej. Sibirskij matematicheskij zhurnal, vol. 65, no. 5, pp. 953–964. [in Russian]

2. Karachik V.V. (2024) Bigarmonicheskaja zadacha Nejmana s dvojnoj involjuciej. Vestnik JuzhnoUral'skogo gosudarstvennogo universiteta. Serija Matematika. Mehanika. Fizika, vol. 16, no. 3, pp. 18–26. [in Russian]

3. Dehkonov F.N. (2024) On the boundary control problem for a pseudo-parabolic equation with involution. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaja matematika. Informatika. Processy upravlenija, vol. 20, no. 3, pp. 416–427.

4. Kadirkulov B.Zh., Kajumova G.A. (2022) Nelokal'naja zadacha dlja uravnenija smeshannogo tipa drobnogo porjadka s involjuciej. Itogi nauki i tehniki. Sovremennaja matematika i ee prilozhenija. Tematicheskie obzory, vol. 210, pp. 55–65. [in Russian]

5. 5 Turmetov B.H., Karachik V.V. (2021) O razreshimosti kraevyh zadach Dirihle i Nejmana dlja uravnenija Puassona s mnozhestvennoj involjuciej. Vestnik Udmurtskogo universiteta. Matematika. Mehanika. Komp'juternye nauki, vol. 31, no. 4, pp. 651–667. [in Russian]

6. Cabada A., Tojo F.A.F. (2015) Differential Equations with Involutions, 1st ed., Atlantis Press: Paris, France. ISBN 978-94-6239-120-8.

7. Sarsenbi A.A., Mussirepova E. (2022) Green’s function of a boundary value problem for a secondorder differential equation with involution. Vestnik Nacional'noj inzhenernoj akademii Respubliki Kazahstan, vol. 11, no. 12, p. 21.

8. Dildabek G., Ivanova M.B., Sadybekov M.A. (2012) On root functions of nonlocal differential secondorder operator with boundary conditions of periodic type. Journal of Mathematics, Mechanics and Computer Science, vol.112, no. 4.

9. Dzhumabayev D.S. (1989) Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation. Comput Maths Math Phys., vol. 29, no. 34, pp. 34–46.

10. Asanova A.T. i dr. (2024) O kraevoj zadache dlja giperbolicheskogo uravnenija vysokogo porjadka s impul'snoj diskretnoj pamjat'ju. Vestnik Kazahstansko-Britanskogo tehnicheskogo universiteta, vol. 21, no. 3, pp. 191–200. [in Russian]

11. Usmanov Q.İ., Jappar A.S. (2020) İmpülsty şettık şartty parametrlı integraldyq-diferensialdyq teñdeuler jüiesınıñ derbes bır jağdaiynyñ bırmändı şeşımdılıgı. Vestnik KazNPU imeni Abaja. Serija Fizikomatematicheskie nauki, vol. 72, no. 4, pp. 78–84. [in Kazakh]

12. Iskakova N.B. i dr. (2024) Chislennyj metod reshenija kraevoj zadachi dlja parabolicheskogo uravnenija. Vestnik Kazahstansko-Britanskogo tehnicheskogo universiteta, vol. 21, no. 3, pp. 165–175. [in Russian]


Review

For citations:


Usmanov K.I., Nazarova K.Zh., Тurganbaeva Zh. SOLVABILITY OF A BOUNDARY VALUE PROBLEM OF THE SAMARSKY-IONKIN TYPE FOR DIFFERENTIAL EQUATIONS WITH INVOLUTION. Herald of the Kazakh-British technical university. 2025;22(1):173-183. (In Russ.) https://doi.org/10.55452/1998-6688-2025-22-1-173-183

Views: 61


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)