Preview

Herald of the Kazakh-British technical university

Advanced search

INFLUENCE OF THE RATIO OF GASE CONSUMPTION N2/Ar AND MAGNETRON POWER ON THE DENSITY AND STOICHIOMETRIC COMPOSITION OF TINX FILMS SYNTHESIZED BY MAGNETRON SPUTTERING METHOD

https://doi.org/10.55452/1998-6688-2024-21-3-302-313

Abstract

The films of titanium nitride were deposited by direct current magnetron sputtering on the surface of singlecrystalline silicon samples in an Ar-N2  atmosphere for use as a diffusion barrier. The thickness and density of films were measured by X-ray reflectometry. The design of the MAGNA TM-200-01 installation has been changed to increase the supply of nitrogen into the chamber. The influences of sputtering conditions, including the flow rate of nitrogen and argon gases and their N2 /Ar ratios in the range of 1–60 in the chamber, magnetron power of 690–1400 W on the formation of TiNx  films, their density and stoichiometric composition, were studied. It is shown that the value of x is affected not only by the N2 /Ar gas flow rate ratio, but also by the magnetron power. At the sputtering parameters 1200 W, N2 /Ar = 30, 0.8 Pa, 320 s and 100°C, a maximum density of 5.247 g/cm3  of a film was achieved, which corresponds to the composition TiN0.786 = Ti56N44. The presence of nanocrystalline film of titanium nitride and the absence of a nanocrystalline titanium phase were confirmed by photographic X-ray diffraction. It was found that for the synthesis of titanium nitride as close as possible to the stoichiometric composition TiN0.770 - TiN0.786, it is necessary to use magnetron power in the range of 900–1200 W, nitrogen rate of 30 cm3 /min with low argon flows of 1–5 cm3 /min.

About the Authors

S. Keiinbay
Kazakh-British Technical University
Kazakhstan

postdoctoral researcher 

050000, Almaty



K. Kh. Nussupov
Kazakh-British Technical University
Kazakhstan

Dr.Phys.-Math.Sc., chief researcher 

050000, Almaty



A. T. Sultanov
Kazakh-British Technical University
Kazakhstan

PhD student 

050000, Almaty



I. E. Tyschenko
Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Dr.Phys.-Math.Sc., leading researcher 

630090, Novosibirsk



A. Ph. Eshanov
Kazakh-British Technical University
Kazakhstan

student 

050000, Almaty



N. B. Beisenkhanov
Kazakh-British Technical University
Kazakhstan

Dr.Phys.-Math.Sc., chief researcher 

050000, Almaty



References

1. Petrov I., Hultman L., Helmersson U., Sundgren J.E., Greene J.E. Thin Solid Film., 1989, vol. 169, pp. 299–314. https://www.sciencedirect.com/science/article/abs/pii/004060908990713X.

2. Arshi N., Lu J., Joo Y.K., Lee C.G., Yoon J.H., Ahmed F. Mater. Chem. Phys., 2012, vol. 134, pp. 839–844. https://www.sciencedirect.com/science/article/abs/pii/S0254058412003288.

3. Istratov A.A. and Weber E. R. J Electrochem Soc, 2002, vol. 149, no. 1, p. G21. http://doi.org/10.1149/1.1421348.

4. Aljaafari A., Ahmed F., Shaalan N.M., Kumar S. and Alsulami A. Inorganics, 2023, vol.11, no. 5, p. 204. https://doi.org/10.3390/inorganics11050204.

5. Veprek S., Veprek-Heijman M.G., Karvankova P., Prochazka J. Thin Solid Film, 2005, vol. 476, pp. 1–29.

6. Kadlec S., Musil J., Vyskcil J., Surface and Coatings Technolgy, 1992, vol. 54–55 (16 November 1992), pp. 287–296. https://doi.org/10.1016/S0257-8972(09)90064-0.

7. Jiang F., Zhang T.F., Wu B.H., Surface and Coatings Technolgy, 2016, vol. 292, pp. 54–62. http://dx.doi.org/10.1016/j.surfcoat.2016.03.007.

8. Niyomsoan S., Grant W., Olson D.L., Mishra B. Thin Solid Films, 2002, vol. 415, pp. 187–194. https://doi.org/10.1016/S0040-6090(02)00530-8.

9. Patsalas P., Charitidis C., Logothetidis S., Dimitriadis C.A., Valassiades O.J. Appl. Physic, 1999, vol.86, pp. 5296–5298. https://pubs.aip.org/aip/jap/article-abstract/86/9/5296/289131/Combined-electrical-andmechanical-properties-of?redirectedFrom=fulltext.

10. Banerjee R., Chandra R., Ayyub P. Thin Solid Films, 2002, vol. 405, pp. 64–72. https://www.sciencedirect.com/science/article/abs/pii/S0040609001017059.

11. Kavitha A., Kannan R., Gunasekhar K.R. Journal of Electronic Materials, 2017, vol.7, pp. 1–8. http://dx.doi.org/10.1007/s11664-017-5608-4.

12. Gu P., Zhu X., Li J., Wu H., Yang D. Journal of Materials Science: Materials in Electronics, 2018, vol. 29, pp. 9893–9900. https://doi.org/10.1007/s10854-018-9031-2.

13. Fillot F., Morel T., Minoret S., Matko I., Maıˆtrejean S., Guillaumot B., Chenevier B., and Billon T. Microelectron. Eng., 2005, vol. 82, pp. 248–253. https://www.sciencedirect.com/science/article/abs/pii/S0167931705003485.

14. Echtermeyer T., Gottlob H.D.B., Wahlbrink T., Mollenhauer T., Schmidt M., Efavi J.K., Lemme M.C., and Kurz H. Solid State Electron, 2007, vol. 51, pp. 617–621. https://www.sciencedirect.com/science/article/abs/pii/S0038110107000640.

15. Lee Y.J. Mater. Lett., 2005, vol. 59, pp. 615–617. https://www.sciencedirect.com/science/article/abs/pii/S0167577X04007347.

16. Yoon D.S., Roh J.S., Lee S.M., and Baik H.K. J. Electron. Mater., 2003, vol.32, pp. 890–898. https://link.springer.com/article/10.1007/s11664-003-0206-z.

17. Park D.G., Lim K.Y., Cho H.J., Cha T.H., Yeo I.S., Roh J.S., and Park J.W. Appl. Phys. Lett., 2002, vol. 80, pp. 2514–2516. https://pubs.aip.org/aip/apl/article-abstract/80/14/2514/514810/Impact-of-atomiclayer-deposited-TiN-on-the-gate?redirectedFrom=fulltext.

18. Yang X., Liu W., Bastiani M. De, Allen T., Kang J., Xu H., Aydin E., Xu L., Bi Q., Dang H., AlHabshi E., Kotsovos K., AlSaggaf A., Gereige I., Wan Y., Peng J., Samundsett C., Cuevas A., Wolf S. De, Joule 3, 2019, pp. 1314–1327. https://doi.org/10.1016/j.joule.2019.03.008.

19. Kern W. The Evolution of Silicon Wafer Cleaning Technology. Journal of the Electrochemical Society, 1990, vol. 137, no. 6, pp. 1887–1892. https://iopscience.iop.org/article/10.1149/1.2086825.

20. Touryanski A.G., Vinogradov A.V., and Pirshin I.V. X-ray reflectometer. US Patent No. 6041098, 2000. https://patents.google.com/patent/US6041098A/en.

21. Henke B.L., Gullikson E.M., J Davis. C. In: Atomic Data and Nuclear. Data Tables 54, 2, 1993, 181 p. http://henke.lbl.gov/optical_constants/.


Review

For citations:


Keiinbay S., Nussupov K.Kh., Sultanov A.T., Tyschenko I.E., Eshanov A.P., Beisenkhanov N.B. INFLUENCE OF THE RATIO OF GASE CONSUMPTION N2/Ar AND MAGNETRON POWER ON THE DENSITY AND STOICHIOMETRIC COMPOSITION OF TINX FILMS SYNTHESIZED BY MAGNETRON SPUTTERING METHOD. Herald of the Kazakh-British technical university. 2024;21(3):302-313. (In Russ.) https://doi.org/10.55452/1998-6688-2024-21-3-302-313

Views: 328


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)