Preview

Herald of the Kazakh-British technical university

Advanced search

ON THE UNIQUE SOLVABILITY OF A BOUNDARY VALUE PROBLEM FOR DIFFERENTIAL EQUATIONS WITH PARAMETER

https://doi.org/10.55452/1998-6688-2024-21-1-64-74

Abstract

A linear boundary value problem for a differential equation with a parameter is investigated on a finite interval by the parameterization method. The studied boundary value problem with parameter is reduced to an equivalent multipoint boundary value problem with parameters by splitting the interval, introducing additional parameters at the points of splitting and new functions. The obtained equivalent boundary value problem contains Cauchy problems for ordinary differential equations with respect to new functions. By substituting the solution representation of the Cauchy problem into the boundary conditions and continuity conditions of the solution, a system of linear algebraic equations with respect to the introduced parameters is compiled. An algorithm for finding a solution to the boundary value problem with parameters is constructed. The formulation of the theorem on sufficient conditions of unique solvability of the boundary value problem with parameters is given. Sufficient conditions of its unique solvability are obtained in terms of the data of the original boundary value problem. An example showing the fulfillment of the conditions of the theorem is given.

About the Authors

E. A. Bakirova
Institute of Mathematics and Mathematical Modeling; Kazakh National Women's Teacher Training University
Kazakhstan

Can. Phys.-Math.Sc.

Almaty

   


N. B. Iskakova
Institute of Mathematics and Mathematical Modeling
Kazakhstan

Can. Phys.-Math.Sc.

Almaty

   


S. M. Тemesheva
Institute of Mathematics and Mathematical Modeling; Al-Farabi Kazakh National University
Kazakhstan

Dr. Phys.-Math.Sc.

Almaty



Zh. М. Каdirbayeva
Institute of Mathematics and Mathematical Modeling; International Information Technology University
Kazakhstan

Can. Phys.-Math.Sc.

Almaty



References

1. Ronto M., Samoilenko A.M. (2000) Numerical-analytic methods in the theory of boundary-value problems. USA: World Scientific, River Edge, NJ, 468 p.

2. Hartman Ph. (1964) Ordinary Differential Equations. New York: Join Wiley and Sons.

3. Kibenko A.V., Perov A.I. (1963) Nekotorye teoremy sushhestvovanija dlja dvuhtochechnoj kraevoj zadachi s parametrom. Trudy seminara po funkcional'nomu analizu, no. 7, рр. 52–58 [in Russian].

4. Goma I.A. (1977) Metod posledovatel'nyh priblizhenij v dvuhtochechnoj kraevoj zadache s parametrom. Ukr. matem. zhurn, vol. 29, no. 6, pp. 800–807 [in Russian].

5. Jejdel'man Ju.S. (1978) Kraevaja zadacha dlja differencial'nogo uravnenija s parametrom. Dif.uravn, vol. 14, no. 7, pp. 1335–1337 [in Russian].

6. Kurpel N.S, Marusyak A.G. (1980) On a multipoint boundary-value problem for a differential equation with parameters. Ukrainian Math J., no. 2, pp. 223–226.

7. He T., Yang F., Chen C., Peng S. (2011) Existence and multiplicity of positive solutions for nonlinear boundary value problems with a parameter. Comput Math Appl, no. 61, pp. 3355–3363.

8. Feng X., Niu P., Guo Q. (2015) Multiple solutions of some boundary value problems with parameters. Nonlinear Anal: Theo, Meth Appl, no. 74, pp. 1119–1131.

9. Jankowski T., Kwapisz M. (1976) One the existence and uniqueness of solutions of boundary value problem for differential equations with parameters. Math Nachr, no. 71, pp. 237–247.

10. Dzhumabayev D.S. (1989) Criteria for the unique solvability of a linear boundary-value problem for an ordinary differential equation. Computational Mathematics and Mathematical Physics, vol. 29, no 1, pp. 34–46.

11. Dzhumabaev D.S., Bakirova E.A. and Kadirbayeva Zh.M. (2018) An algorithm for solving a control problem for a differential equation with a parameter. News of the NAS RK. Phys., Math. Series, vol.5, no. 321, pp. 25–32.

12. Bakirova E.A., Dzhumabaev D.S. and Mynbayeva S.T. (2020) A method of solving a nonlinear boundary value problem with a parameter for a loaded differential equation. Mathematical Methods in the Applied Sciences, no. 43, pp. 1788–1802. https://doi.org/10.1002/mma.6003.

13. Assanova A.T., Bakirova E.A. and Kadirbayeva Zh.M. (2019) Numerical implementation of solving a boundary value problem for a system of loaded differential equations with parameter. News of the NAS RK. Phys.-Math. Series, vol. 3, no. 325, pp. 77–84.

14. Assanova A.T., Bakirova E.A. and Kadirbayeva Zh.M. (2019) Numerically approximate method for solving of a control problem for integro-differential equations of parabolic type. News of the NAS RK. Phys.Math. Series, vol. 6, no. 328, pp. 14–24.

15. Bakirova E.A., Assanova A.T. and Kadirbayeva Zh.M. (2021) A problem with parameter for the integro-differential equations, Mathematical Modelling and Analysis, vol. 26, no.1, pp. 34–54. https://doi.org/10.3846/mma.2021.11977.

16. Assanova A.T., Bakirova E.A. and Vassilina G.K. (2020) Well-posedness of problem with parameter for an integro-differential equations. Analysis, vol. 4, no. 40, pp. 175–191. https://doi.org/10.1515/anly-20190021.

17. Assanova A.T., Bakirova E.A., Kadirbayeva Zh.M. and Uteshova R.E. (2020) A computational method for solving a problem with parameter for linear systems of integro-differential equations. Computational and Applied Mathematics, vol. 39, no. 248. https://doi.org/10.1007/s40314-020-01298.

18. Assanova A.T., Bakirova E.A. and Kadirbayeva Zh.M. (2020) Numerical solution to a control problem for integro-differential equations. Computational Mathematics and Mathematical Physics, vol. 60, no. 2, pp. 203–221. https://doi.org/10.1134/S0965542520020049.

19. Temesheva S.M., Dzhumabaev D.S., Kabdrakhova S.S. (2021) On one algorithm to find a solution to a linear two-point boundary value problem. Lobachevskii journal of mathematics, vol. 42, no. 3, pp. 606–612. https://doi.org/10.1134/S1995080221030173.

20. Bakirova Je.A., Iskakova N.B., Uaisov B. (2017) Ob odnom algoritme reshenija linejnoj kraevoj zadachi dlja integro-differencial'nogo uravnenija Fredgol'ma s parametrom. Izvestija NAN RK, Ser.fiz.-mat., no.3, pp. 173–180 [in Russian].

21. Iskakova N.B., Kubanychbekkyzy Zh. (2020) Ob odnom algoritme reshenija linejnoj kraevoj zadachi dlja obyknovennogo differencial'nogo uravnenija s parametrom. Vestnik KazNPU im. Abaja, Ser. fiz.-mat. nauki, vol. 2, no. 70, pp. 64–69 [in Russian].

22. Minglibaeva B.B. (2003) Kojefficientnye priznaki odnoznachnoj razreshimosti linejnyh dvuhtochechnyh kraevyh zadach s parametrom. Matematicheskij zhurnal, vol. 3, no. 2, pp. 55–62 [in Russian].


Review

For citations:


Bakirova E.A., Iskakova N.B., Тemesheva S.M., Каdirbayeva Zh.М. ON THE UNIQUE SOLVABILITY OF A BOUNDARY VALUE PROBLEM FOR DIFFERENTIAL EQUATIONS WITH PARAMETER. Herald of the Kazakh-British technical university. 2024;21(1):64-74. (In Kazakh) https://doi.org/10.55452/1998-6688-2024-21-1-64-74

Views: 573


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)