MACHINE LEARNING ALGORITHMS FOR BIOMETRIC IDENTIFICATION OF INDIVIDUALS
Abstract
The article is devoted to the use of machine learning algorithms for biometric identification of individuals. The task is one of the tasks solved with the help of machine learning. A database of photos obtained from open sources has been developed, and the result of the work is the name and photos of a person who has already been identified in the database. In this paper, we investigated and analyzed both hybrid methods for conducting biometric identification of persons on images, and the use of convolutional neural network techniques for conducting biometric identification of individuals.
About the Authors
T. S. ShormanovKazakhstan
Sh. A. Dzhomartova
Kazakhstan
G. Z. Ziyatbekova
Kazakhstan
B. S. Amirkhanov
Kazakhstan
М. Алиаскар
Kazakhstan
References
1. Dalal, Navneet, and Bill Triggs. “Histograms of oriented gradients for human detection.” Computer Vision and Pattern Recognition (CVPR), 2005.
2. P. Viola and M.J. Jones, «Rapid Object Detection using a Boosted Cascade of Simple Features», proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2001), 2001.
3. P. Viola and M. J. Jones, «Robust real-time face detection», International Journal of Computer Vision, vol. 57, no. 2, 2004., pp. 137-154.
4. T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical learning: data mining, inference, and prediction, Second. New York, NY, USA: Springer, 2009. ISBN: 978-0387848570.
5. Vahid Kazemi, and Josephine Sullivan, “One millisecond face alignment with an ensemble of regression trees” Computer Vision and Pattern Recognition (CVPR), 2014.
6. Florian Schroff, Dmitry Kalenichenko, James Philbin, “FaceNet: A Unified Embedding for Face Recognition and Clustering” Computer Vision and Pattern Recognition (CVPR), 2015.
7. Y. LeCun, B. Boser, J. Denker et al., “Handwritten Digit Recognition with a Back-Propagation Network” Neural Information Processing Systems Conference. — 1990. — No.2.—P. 396-404.
8. Долгов В. А. Обзор методов распознавания изображений // Современные тенденции технических наук: материалы VI Международной научной конференции. (г. Казань, май 2018 г.). - Казань: Молодой ученый, 2018. - С. 7-9.
9. Vincent Dumoulin and Francesco Visin. “A guide to convolution arithmetic for deep learning.” arXiv preprint arXiv: 1603.07285 (2016).
10. LeCun, Y Convolutional networks for images, speech, and timeseries / Y. LeCun, Y. Bengio // The Handbook of Brain Theory and Neural Networks. 1995. P. 255-258.
11. Joseph Howse, Joe Minichino Learning OpenCV 3 Computer Vision with Python - Second Edition, Packt Publishing, September 2015, Packt Publishing, ISBN: 9781785289774
12. Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun “Deep Residual Learning for Image Recognition” 2016 IEEE Conference On Computer Vision And Pattern Recognition (CVPR) 2016.
13. Matusugu, Masakazu; Katsuhiko Mori; Yusuke Mitari; Yuji Kaneda. “Subject independent facial expression recognition with robust face detection using a convolutional neural network” 2003 Neural Networks 16 pages 555-559.
Review
For citations:
Shormanov T.S., Dzhomartova Sh.A., Ziyatbekova G.Z., Amirkhanov B.S., MACHINE LEARNING ALGORITHMS FOR BIOMETRIC IDENTIFICATION OF INDIVIDUALS. Herald of the Kazakh-British Technical University. 2019;16(1):119-128. (In Russ.)