Preview

Herald of the Kazakh-British technical university

Advanced search

Numerical modeling of essentially subsonic flows of compressible gas

https://doi.org/10.55452/1998-6688-2023-20-4-85-96

Abstract

A new method for solving essentially subsonic flows is proposed, which represents a significant step in the field of numerical modeling of flows based on the Navier-Stokes system of equations. The method uses an ENO (Essentially Non-Oscillatory) scheme of third order accuracy, which provides higher accuracy when calculating flows with low speed of sound. One of the key features of this method is the introduction of nondimensionalization parameters. These parameters make it possible to adapt the Navier-Stokes equations to different physical conditions and avoid the rigidity of the equations, which is often encountered in numerical modeling problems. This makes the method more flexible and applicable to a variety of engineering and physical problems. To check and approbate this technique, calculations are carried out for two important problems - flow inside a cavern and Poiseuille flow. The value of the Reynolds number, Re=100, as well as various sizes of computational grids are considered. The obtained results are compared with experimental data, and a high degree of agreement between the model and real phenomena is observed. This indicates the effectiveness and accuracy of the proposed method in solving complex flows in various engineering and physical problems.

About the Authors

A.   Мanapova
Civil Aviation Academy
Kazakhstan

Manapova Ainur, Master of applied mathematics and computer science, Senior Lecturer

050039, Almaty



A. Beketaeva
Institute of mathematics and mathematical modeling CS МES RK
Kazakhstan

Beketaeva Assel, Доктор физико-математических наук, Главный научный сотрудник института математики и математического моделирования

ул. Пушкина, 125, 050010, Almaty



V.  Makarov
Institute of control sciences RAS; National research nuclear university «MEPhI»
Russian Federation

Makarov Vadim, Кандидат технических наук, Ведущий научный сотрудник

ул. Профсоюзная, 65, 117997, Moscow



References

1. Karki K., Patankar S. V. Pressure based calculation procedure for viscous flows at all speeds in arbitrary configurations. AIAA journal, vol. 27, no. 9, pp. 1167–1174.

2. Harlow F.H., Amsden A. Numerical calculation of almost incompressible flow. Journal of Computational Physics, vol. 3, pp. 80–93.

3. Harlow F.H., Amsden A. (1971) A numerical fluid dynamics calculation method for all flow speeds, vol. 8, pp. 197–213.

4. Peyret R. and Taylor T.D. Computational methods for fluid flow Springer, Verlag, New York.

5. Temam R. (1969) Sur l’approximation de la solution de Navier-Stokes par la méthode des pas fractionnaires. Archiv. Ration. Mech. Anal, vol. 32, pp. 377–385.

6. Patankar S.V. Numerical heat transfer and fluid flow, McGraw-Hill, New York.

7. Munz C.-D., Roller S., Klein R. and Geratz K.J. (2003) The extension of incompressible flow solvers to the weakly compressible regime. Computers and Fluids, vol. 32, no. 2, pp. 173–196.

8. Bijl H., Wesseling P. (1998) A unified method for computing incompressible and compressible flows in boundary-fitted coordinates. J. Com. Phys., vol 141, no. 2, pp. 153–173.

9. Mary I., Sagaut P. and Deville M. (2000) An algorithm for low Mach number unsteady flows. Computers and Fluids, vol. 29, no. 2, pp. 119–147.

10. Roller S., Munz C.D. (2000) A low Mach number scheme based on multi-scale asymptotics. Computing and Visualization in Science, vol. 3, no. 1/2, pp. 85–91.

11. Van Kan J. (1986) A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Comp., vol. 7, pp. 870–891.

12. Donea J., Giuliani S.L.H., Quartapelle L. (1982) Finite element solution of the unsteady Navier-Stokes equations by fractional step method. Computer Methods in Applied Mechanics and Engineering, vol. 30, pp. 53–73.

13. Zienkiewicz O.C., Nithiarasu P., Codina R., Vazquez M., Orti. P. (1999) The characteristic-based-split procedure: An efficient and accurate algorithm for fluid problems. International Journal for Numerical Methods in Fluids, vol. 31, pp. 359.

14. Zienkiewicz O.C., Codina R. (1995) A general algorithm for compressible and incompressible flow. Part I. The split characteristic-based scheme. International Journal for Numerical Methods in Fluids, vol. 20, pp. 887–913.

15. Zienkiewicz O.C., Morgan K., Sataya Sal, B.V.K., Codin R., Vasquez M. (1995) A general algorithm for compressible and incompressible flow. Part II . Test on the explicit form. International Journal for Numerical Methods in Fluids, vol. 20, pp. 887–913.

16. Zienkiewicz O.C., Taylor R.L. (2000) The finite element method, 3: fluid dynamics, Butterworth and Heinemann.

17. Turkel E. (1997) Preconditioning – Square methods for multidimensional aerodynamics. American Institute of Aeronautics and Astronautics, vol. 2025, 856 p.

18. Pelanti M. (2017) Low Mach number preconditioning techniques for Roe-type and HLLC-type methods for a two-phase compressible flow model. Applied Mathematics and Computation, vol. 310, pp. 112–133.

19. Pelanti M., Shyue K.M. (2014) A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation wave. J. Comput. Phys., vol. 259, pp. 331–357.

20. Maia A.A.G., Kapat J.S., Tomita J.T., Silva J.F., Bringhenti C., Cavalca D.F. (2020) Preconditioning methods for compressible flow CFD codes: Revisited. International Journal of Mechanical Sciences, vol. 186.

21. Darmofal D.L., Siu K. (1999) A robust multigrid algorithm for the Euler equations with local preconditioning and semi-coarsening. J. Compu. Phys., vol. 151, no. 2, pp. 728–756.

22. Turkel E., Vatsa V.N., Radaspiel R. (1996) Preconditioning methods for low-speed flows. AIAA, vol. 96.


Review

For citations:


Мanapova A., Beketaeva A., Makarov V. Numerical modeling of essentially subsonic flows of compressible gas. Herald of the Kazakh-British technical university. 2023;20(4):85-96. (In Russ.) https://doi.org/10.55452/1998-6688-2023-20-4-85-96

Views: 575


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)