Preview

Herald of the Kazakh-British technical university

Advanced search

NANOPARTICLE SYNTHESIS BY THE PECVD METHOD BASED ON RF DISCHARGE

https://doi.org/10.55452/1998-6688-2023-20-2-6-12

Abstract

This scientific paper presents the results of the study of the synthesis of carbon nanoparticles in radio-frequency ( RF ) discharge plasma at low pressures in a vacuum apparatus. The growth of carbon nanoparticles was studied under different plasma parameters, such as variation of self-displacement voltage, temperature, and discharge power. The experiment was performed in the pressure range of 0.5-1.1 mbarr and powers of 6-20 W. The results showed that the synthesis time of carbon nanoparticles, including their formation and growth, depends on the plasma parameters. Small changes in temperature, pressure, and plasma power can significantly change the growth and formation of nanoparticles. An important conclusion of this work is that increasing the temperature of the plasma-forming gas leads to an increase in the formation time of carbon nanoparticles. The dependences of nanoparticle growth on the discharge power, selfdisplacement voltage on the discharge pressure, and temperature on the discharge power were also obtained. The results obtained provide valuable information for understanding and controlling the synthesis process of carbon nanoparticles in the plasma environment. This is important for various technological applications, including nanoelectronics and catalysis.

About the Authors

B. Zharylgapov
Al-Farabi Kazakh National University
Kazakhstan

Zharylgapov Berdibek

Al-Farabi Street, 71, Almaty, 050000



S. A. Orazbayev
Al-Farabi Kazakh National University
Kazakhstan

Orazbayev Sagi

Al-Farabi Street, 71, Almaty, 050000



References

1. Roco M.C. (2011) The long view of nanotechnology development: the National nanotechnology initiative at 10 years, J. of Nanoparticle Research, vol. 13, pp. 897–919.

2. Khushwant S. Yadav, Sheeba Jacob, Anil M. Pethe. (2022) Chapter 10 – Nanomaterials physics: A critical review, Photophysics and Nanophysics in Therapeutics.

3. Eric Vogel. (2007) Technology and metrology of new electronic materials and devices. Nature Nanotechnology, vol. 2, pp. 25–32.

4. Bayda S., Adeel M., Tuccinardi T., Cordani M. & Rizzolio F. (2019) The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules, 25(1), 112. https://doi.org/doi:10.3390/molecules25010112.

5. Gogotsi Y. (2014). What Nano Can Do for Energy Storage. ACS Nano, 8(6), 5369–5371. https://doi.org/doi:10.1021/nn503164x.

6. Rajput N.S. & Luo X. (2015) FIB Micro-/Nano-fabrication, Micromanufacturing Engineering and Technology, 61–80. https://doi.org/doi:10.1016/b978-0-323-31149-6.00003-7.

7. Rohkamm E., Spemann D., Scholze F. & Frost F. (2021) Characterization of an RF excited broad beam ion source operating with inert gases, Journal of Applied Physics, 129(22), 223305. https://doi.org/doi:10.1063/5.0052758.

8. Weiser M. (2009). Ion beam figuring for lithography optics. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 267(8-9), 1390–1393. https://doi.org/doi:10.1016/j.nimb.2009.01.051.

9. Sobolewski M.A., J. K. Olthoff and Y. Wang. (1999) Ion energy distributions and sheath voltages in a radiofrequency- biased, inductively coupled, high-density plasma reactor, J. Appl. Phys. 85, 3966–3975.

10. Woodworth J.R., M.E. Riley, D.C. Meister, B.P. Aragon, M.S. Le and H. H. Sawin. (1996) Ion energy and angular distributions in inductively coupled radio frequency discharges in argon, J. Appl. Phys. 80, рр.1304–1311.

11. Chevolleau T. and Fukarek W. (2000) Ion flux, ion energy distribution and neutral density in an inductively coupled argon discharge, Plasma Sources Sci. Technol. 9, pp. 568–573.

12. Wen D.-Q., W. Liu, F. Gao, M.A. Lieberman and Y.-N. Wang. (2016) A hybrid model of radio frequency biased inductively coupled plasma discharges: Description of model and experimental validation in argon, Plasma Sources Sci. Technol. 25, 045009.

13. Orazbayev S.A., Henault M., Ramazanov T.S., Boufendi L., Batryshev D.G. & Gabdullin M.T. (2019) Influence of Gas Temperature on Nucleation and Growth of Dust Nanoparticles in RF Plasma. IEEE Transactions on Plasma Science, 1–5. https://doi.org/doi:10.1109/tps.2019.2912805.

14. Lin J., Orazbayev S., Hénault M., Lecas T., Takahashi K. & Boufendi L. (2017) Effects of gas temperature, pressure, and discharge power on nucleation time of nano-particles in low pressure C2H2/Ar RF plasmas, Journal of Applied Physics, 122(16), 163302. https://doi.org/doi:10.1063/1.5007951.

15. Beckers J., Stoffels W.W. & Kroesen G.M.W. (2009) Temperature dependence of nucleation and growth of nanoparticles in low pressure Ar/CH4RF discharges, Journal of Physics D: Applied Physics, 42(15), рр. 155-206. https:// doi.org/doi:10.1088/0022-3727/42/15/155206.

16. Kovacevic E., Berndt J., Strunskus T. & Boufendi L. (2012) Size dependent characteristics of plasma synthesized carbonaceous nanoparticles, Journal of Applied Physics, 112(1), 013303. https://doi.org/doi:10.1063/1.4731751.


Review

For citations:


Zharylgapov B., Orazbayev S.A. NANOPARTICLE SYNTHESIS BY THE PECVD METHOD BASED ON RF DISCHARGE. Herald of the Kazakh-British technical university. 2023;20(2):6-12. (In Kazakh) https://doi.org/10.55452/1998-6688-2023-20-2-6-12

Views: 407


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)