COMPUTER SIMULATION OF PARTICLE- SOLID SURFACE INTERACTIONS
Abstract
In this work the peculiarities of the some processes (ion scattering, sputtering and implantation at channeling conditions as well as nanoclusters deposition and thin film growth) accompanying the particle-solid surface interactions has been investigated by different computer simulation methods (binary collision approximation, molecular dynamics,embedded atom model potential, energy minimization method).The scattering and sputtering processes at 0.5-5 keVArand Ne ions grazing bombardment of Si(001), SiC(001), Cu3Au(001), Ni(100) and Cu(100) surfaces and their possible application for the surface diagnostics and modification have been studied by computer simulation in binary collision approximation. Ion implantation at normal as well as at glancing incidence is carried out by computer simulation in binary collision approximation. Profiles of the distribution of channeled ions at implantation have been calculated depending on crystal lattice type, kind of ions and their energy. It has been shown that the channeling of low-energy ions through thin single crystal metal films can be used to determine the sort and adsorption site of light atoms adsorbed on a clean rear surface. It is shown that for paraxial part of a beam the main contribution to the total energy losses comes from inelastic ones. It has been established that the energy losses of ions transmitted trough thin crystal and depth profile distributions depend on width of the channel and mass ratio of colliding atoms. The deposition of bi-metallic AgnCom nanoclusters on Ag(100) surface and thin film growth have been studied at the atomic scale by means of classical molecular dynamics simulation. It was shown that the embedded atom model potential may be used successfully for studying of AgnCom nanocluster deposition on Ag(100) surface at the slowing down energies (0.25 eV – 1.5 eV per/atom). The adsorption of fullerene C60 onto the surface and edges of defect-free graphene was studied by computer simulation within the framework of classical molecular dynamics. The computer model of a single defect-free C60 fullerene was built by the energy minimization method using the second-generation Brenner potential (REBO) and the cohesive energy of each carbon atom in the fullerene was determined. It was established that the fullerene is better adsorbed on the armchair edge of graphene and worst on the its “corner” atoms.
About the Authors
F. F. UmarovKazakhstan
A. A. Dzhurakhalov
Belgium
A. M. Rasulov
Uzbekistan
I. D. Yadgarov
Uzbekistan
References
1. Van Hove M.A. Surf. Sci., 603, 1301-1305 (2009).
2. Begemann, S. H. A. and Boers, A. L. Surf. Sci., 30, 134 (1972).
3. Parilis, E. S., Turaev, N.Yu. and Umarov, F. F. Radiat. Eff., 24, 207 (1975).
4. Mashkova, E. S. and Molchanov,V. A. Medium Energy Ion Reflection from Solids. North- Holland Publ., Amsterdam (1985).
5. Parilis, E. S., Kishinevsky, L. M., Turaev, N. Yu., Baklitzky, B. E., Umarov, F. F., Verleger, V. Kh., Niznaya, S. and Bitensky, I. S. Atomic Collisions on Solid Surfaces. North-Holland Publ., Amsterdam (1993).
6. Smith, D. P. Surf. Sci., 25, 171 (1971).
7. Labanda J. G. C., Barnett S. A.: Sep 1997, J. Electronic Mater.
8. Dzhurakhalov A. A.: 2004, Nucl. Instr. and Meth. in Phys. Res., B216, 202.
9. Umarov F. F., Dzhurakhalov A. A., Teshabaeva N. A.: 1998, Appl. Surf. Sci., 125, 226.
10. Morgan D.V. (Ed.) (1973). In: Channeling Theory. Observation and Applications. Wiley, London.
11. Ziegler J.F., Biersack J.P., and Littmark U. (1983). Stopping and Ranges of Ions in Matters. Pergamon, NewYork.
12. Kumakhov M.A., and Komarov F.F. (1981). Energy loss and Ion Ranges in Solids, Gordon and Breach, NewYork.
13. Stepina N.P. and Kachurin G.A. (1983). Sov. Phys. Semiconductors, 17, 449.
14. Vavilov V.S. (1985). Usp. Fiz. Nauk (1985), 145, 9.
15. Umarov F.F., Rasulov A.M. and Khaidarov A. Kh. Rad.Eff. and Defects in Solids, (2003), Vol.158, p.481.
16. P. Melinon, V. Paillard, V. Dupuis, A. Perez, P. Jensen, A. Hoareau, J.P. Perez, J. Tuaillon, M. Broyer, J.L.Vialle, M.Pellarin, B.Baguenard, J. Lerme; Int. J. Mod. Phys. B139 (1995) 339.
17. M. Hou, Nucl. Instr. and Methods B135 (1998) 501.
18. Dzhurakhalov A.A., Peeters F.M. 2011. Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane //Carbon 49, P. 3258-3266.
19. Grizzi, O., Bu, H. and Rabalais, J.W. (1990). Phys. Rev. B, 41, 4789.
20. Shulga, V. I. (1980). Radiat. Eff., 51, 1.
21. Dzhurakhalov A.A., Umarov, F.F. Nucl. Instr. and Meth. B 161-163 (2000), p.377.
22. Robinson, M. T. and Torrens, I. M. (1974). Phys. Rev., B9, 5008.
23. W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J.Chem.Phys., 76 (1982) 637.
24. F. Cleri, V. Rosato, Phys.Rev., B48, 1 (1993) 22.
25. G.J. Ackland, V. Vitek, Phys.Rev., 41, 15 (1990) 10324.
26. S.M. Foiles, M.I. Baskes, M.S. Daw, Phys.Rev., B33, 12 (1986) 7983.
27. R.A. Johnson, Phys. Rev., B41, 14, (1990) 9717.
28. R.A. Johnson, Phys. Rev., B39, 17, (1990) 12554.
29. AIPH
30. Rothery & Reynolds (1939)
31. Laref S., AsaduzzamanA.M., Beck W., Deymier P.A., Runge K., Adamowicz L., Muralidharan K., Chemical Physics Letters, 582, (2013), 115–118.
32. Q. Hou, M. Hou, L. Bardotti, B. Prevel, P. Melinon, A. Perez, Phys. Rev. B62 (2000) 2825.
33. Brenner D.W., ShenderovaO.A., Harrison J.A., Stuart S.J., NiB., Sinnot S.B., J. Phys: Condens. Matter.14, (2002), 783–802.
34. Sanchez J.M., Moran-Lopez J.L. Surf.Sci. Lett. Vol.157 (1985), p.297.
35. Lipovsky R. Phys. Rev. Lett.Vol.49 (1982), p.1575.
36. Houssian L., Bertrand P. Nucl. Instr. and Meth. B 118 (1996), p.467.
37. Houssian L., Bertrand P. Nucl. Instr. and Meth. B 115 (1996), p.161.
38. Dzhurakhalov A.A., Umarov, F.F. Nucl. Instr. and Meth. B 161-163 (2000), p.377.
39. Stensgaard I. Nucl.Instrum. and Meth. B 15, (1986), p.300.
40. Dzhurakhalov A.A., Parilis E.S., Rasulov A.M., Umarov F.F. Poverkhnost, Vol.6, (1990), p.148 (in Russian).
41. Umarov F.F., Rasulov A.M. Applied Surf. Sci., Vol.135 (1998), p.269.
42. Demuth J.E., Jepsen D.W., Marcus P.M. Phys. Rev. Lett., Vol.31 (1973), p.540.
43. Ulbricht H., Moos G., Hertel T., Phys. Rev. Lett. 90(9): (2003), 095501.
Review
For citations:
Umarov F.F., Dzhurakhalov A.A., Rasulov A.M., Yadgarov I.D. COMPUTER SIMULATION OF PARTICLE- SOLID SURFACE INTERACTIONS. Herald of the Kazakh-British technical university. 2020;17(1):180-194.