Preview

Herald of the Kazakh-British Technical University

Advanced search

FUNCTIONALIZATION AND MODIFICATION OF CARBON NANOMATERIALS BASED ON GRAPHENE

Abstract

Graphene can be functionalized by various groups of atoms. In this paper, we will consider the most studied method of chemical functionalization - oxidation. Various graphene synthesis methods have been continuously improved over the years to provide safer and more effective alternatives. Although Hammers extraction of graphene is one of the oldest methods, it is nevertheless one of the most suitable methods for the formation of bulk graphene. Graphene can be obtained as reduced graphite oxide, sometimes also called graphene oxide. The efficiency of this oxidation process can be estimated by the carbon / oxygen ratio of the obtained graphene. In this paper, the synthesis and physicochemical analysis of GO and RGO are given. GO was obtained using the modified Hammers method, then the obtained GO was chemically reduced using hydrazine monohydrate. GO and RGO had different morphology, quality, functionalized groups. Infrared analysis showed the presence of abundant oxygen-containing functional groups in GO compared with RGO. The results of the analysis showed that GO was successfully oxidized from graphite, while RGO was effectively reduced from GO.

About the Authors

R. M. Kudaibergenova
Таразский государственный университет имени М.Х. Дулати
Kazakhstan


G. K. Sugurbekova
Лаборатория преобразования материалов и прикладной физики, Национальная лаборатория Астана
Kazakhstan


A. N. Nurlybayeva
Таразский государственный университет имени М.Х. Дулати
Kazakhstan


S. M. Kantarbayeva
Таразский государственный университет имени М.Х. Дулати
Kazakhstan


E. A. Baybazarova
Таразский государственный университет имени М.Х. Дулати
Russian Federation


References

1. Singh V., Joung D., Zhai L. // Graphene Based Materials: Past, Present and Future.Progress in Material Science. 2011. V. 56. P. 1178.

2. Pei S. // The Reduction of Graphene Oxide.Carbon. 2012. V. 50. P. 3210.

3. Stankovich S., Dikin D., Piner R.D. et al. // Synthesis of graphene based nanosheets via chemical reduction exfoliated grphie oxide. Carbon. 2007. V. 45. P. 1558.

4. Allen M.J., Tung V.C., Kaner R.B. // Honeycomb carbon: A review of graphene. Chemical Reviews 2010. V. 110. N LP.132.

5. Bae S., Kim H., Lee Y. // Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology 2010. V. 5. N 8. P. 574−578.

6. Novoselov K., Fal V., Colombo L. Gellert P. // A roadmap for graphene.Nature. 2012. V. 490. N 7419. P. 192−200.

7. Offeman R., Hummers W. // Preparation of Graphitic Oxide.Journal of the American Chemical Society1958. V. 80. P. 1339−1339.

8. Bao Q., Eda G., Chhowalla M. // Graphene oxide as a chemically tunable platform for optical applications.Nature Chemistry 2010. V. 2. N 12. P. 1015−1024.

9. Park S., Ruoff R.S. // Chemical Methods for the Production of Graphenes. Nature Nanotechnology 2009. Vol. 4. N 4. P. 217−224.

10. Chen W., Yan L. // Preparation of graphene by a low-temperature thermal reduction at atmosphere pressure. Nanoscale. 2010. V. 2. P. 559.

11. Eda G., Fanchini G., Chhowalla M. // Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008. V. 3. N 5. P. 270−274.

12. Soldano C., Mahmood A., Dujardin E. // Production, properties and potential of graphene. Carbon. 2010. V. 48. N 8. P. 2127−2150.

13. Brodie B.C. // Sur le poids atomique du graphite. Ann. Chim. Phys. 1860. V. 59. P. 466−472.

14. Si Y.,Samulski E. T. // Synthesis of water soluble graphene. Nano Lett. - 2008. - V. 8. - P. 1679−1682.

15. Jeong, Hae-Kyung // Thermal stability of graphite oxide . Chem. Phys. Lett. - 2009. - V. 470.- P. 255−258.

16. Karthika P.,Rajalakshmi N., Dhathathreyan K. S. // Functionalized exfoliated graphene oxide as supercapacitor electrodes . Soft Nanosci. Lett. - 2012. - V. 2. - P. 59−66.

17. Galande Ch., Mohite A. D., Naumov A. V., Gao W., Ci L., Ajayan A., Gao H., Srivastava A., Weisman R. B., Ajayan P. M. // Quasi-molecular fluorescence from graphene oxide. Sci. Rep. - 2011. - V. 1 - P. 85

18. Min Fu,Qingze Jiao, Yun Zhao, Hansheng Li // Vapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materials. J. Mater. Chem. A. - 2014. - V. 2. - P. 735−744.

19. Беллами Л. Дж. Инфракрасные спектры сложных молекул. Пер. с англ. / Под ред. Ю. А. Пентина. – М.: Изд-во Иностранной литературы, 1963. – 592 с

20. Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений: Пер с англ. - М.: Мир., 1991. – 536 с.

21. Joseph B. Lambert // Introduction to Organic Spectroscopy. New York : Macmillan, 1987.

22. D. P. Savitskyi, A. S. Makarov // Preparation of a colloidal graphene oxide solution from natural coal. Nac. akad. nauk Ukr., 2016, № 6.

23. Dispersion in water: Single layer graphene oxide. URL: https://graphene−supermarket.com/Dispersion−in−Water−ingle−Layer−Graphene−Oxide−175−ml.html

24. Шульга Ю.М.,Баскаков С.А., Дремова Н.Н., Шульга Н.Ю.,. Скрылева Е.А. // Расслоение и восстановление оксида графита при микроволновом нагреве. Фундаментальная и прикладная физика. − 2012. − № 1. − С. 7-10.


Review

For citations:


Kudaibergenova R.M., Sugurbekova G.K., Nurlybayeva A.N., Kantarbayeva S.M., Baybazarova E.A. FUNCTIONALIZATION AND MODIFICATION OF CARBON NANOMATERIALS BASED ON GRAPHENE. Herald of the Kazakh-British Technical University. 2020;17(1):156-163. (In Russ.)

Views: 324


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)