COMPARATIVE PERFORMANCE CHARACTERISTICS OF METAL-AIR BATTERIES WITH CAST AND POROUS ELECTRODES
https://doi.org/10.55452/1998-6688-2025-22-4-401-410
Abstract
Currently, the development of electrochemical energy storage systems plays a key role in meeting the growing demand for electric power. Metal-air batteries (MAB) with high specific energy capacity are considered as promising solutions for use in power plants as backup power sources. One of the main limitations of their widespread implementation is the need to improve the efficiency of anode materials. In this paper, we propose the use of porous aluminum electrodes to improve the performance of MAB. Two types of porous anodes manufactured using different technologies were studied. For the powder aluminum anode, the current density was 20–30 mA/ cm², which is comparable to the performance of a monolithic (standard) anode. At the same time, foam aluminum demonstrated higher current density values of 52–64 mA/cm². An additional advantage of porous anodes is their reduced weight (by 10–30%), which helps to improve the weight and size characteristics of MAB and opens up opportunities for creating more efficient energy systems.
About the Authors
A. M. ZhukeshovKazakhstan
Dr. Phys.-Math. Sc., Professor
Almaty
U. B. Abdybai
Kazakhstan
PhD student
Almaty
E. E. Salimov
Kazakhstan
PhD student
Almaty
M. Carlos
Germany
Professor
Anhalt
References
1. Narayanan, S.R., Prakash, G.K.S., Manohar, A., Yang, B., Malkhandi, S., & Kindler, A. Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage. Solid State Ionics, 216, 105–109 (2012). https://doi.org/10.1016/j.ssi.2012.05.016.
2. Han, X., Li, X., White, J., Zhong, C., Deng, Y., Hu, W., & Ma, T. Metal–air batteries: From static to flow system. Advanced Energy Materials, 8, 1801396 (2018). https://doi.org/10.1002/aenm.201801396.
3. Fan, X., Liu, B., Liu, J., Ding, J., Han, X., Deng, Y., Lv, X., Xie, Y., Chen, B., Hu, W., et al. Battery technologies for grid-level large-scale electrical energy storage. Transactions of Tianjin University, 26, 92–103 (2020). https://doi.org/10.1007/s12209-019-00236-w.
4. Salameh, T., Sayed, E.T., Abdelkareem, M.A., Olabi, A.G., & Rezk, H. Optimal selection and management of hybrid renewable energy system: Neom city as a case study. Energy Conversion and Management, 244, 114434 (2021). https://doi.org/10.1016/j.enconman.2021.114434.
5. Li, Y., & Lu, J. Metal–air batteries: Will they be the future electrochemical energy storage device of choice? ACS Energy Letters, 2(6), 1370–1377 (2017). https://doi.org/10.1021/acsenergylett.7b00119.
6. Wang, H.F., & Xu, Q. Materials design for rechargeable metal–air batteries. Matter, 1(3), 565–595 (2019). https://doi.org/10.1016/j.matt.2019.05.018.
7. Parker, J.F., Chervin, C.N., Nelson, E.S., Rolison, D.R., & Long, J.W. Wiring zinc in three dimensions rewrites battery performance – dendrite-free cycling. Energy & Environmental Science, 7, 1117–1124 (2014). https://doi.org/10.1039/C3EE43674H.
8. Liu, P., Ling, X., Zhong, C., Deng, Y., Han, X., & Hu, W. Porous zinc anode design for Zn–air chemistry. Frontiers in Chemistry, 7, 656 (2019). https://doi.org/10.3389/fchem.2019.00656.
9. Pino, M., Cuadrado, C., Chacón, J., et al. The electrochemical characteristics of commercial aluminium alloy electrodes for Al–air batteries. Journal of Applied Electrochemistry, 44, 1371–1380 (2014). https://doi.org/10.1007/s10800-014-0739-4.
10. Mutlu, R.N., & Yazici, B. Copper-deposited aluminum anode for aluminum–air battery. Journal of Solid State Electrochemistry, 23, 529–541 (2019). https://doi.org/10.1007/s10008-018-4147-7.
11. Ma, J., Wen, J., Gao, J., et al. Performance of Al–0.5Mg–0.02Ga–0.1Sn–0.5Mn as anode for Al–air battery in NaCl solutions. Journal of Power Sources, 253, 419–423 (2014). https://doi.org/10.1016/j. jpowsour.2013.12.088.
12. Li, D., Liu, Y., Xie, Y., et al. Porous powder anode for high performance rechargeable aluminum batteries. Journal of Power Sources, 641, 236860 (2025). https://doi.org/10.1016/j.jpowsour.2025.236860.
13. Mori, R. Recent developments for aluminum–air batteries. Electrochemical Energy Reviews, 3, 344–369 (2020). https://doi.org/10.1007/s41918-020-00065-4.
14. Ma, Y., Sumboja, A., Zang, W., et al. Flexible and wearable all-solid-state Al–air battery based on iron carbide encapsulated in electrospun porous carbon nanofibers. ACS Applied Materials & Interfaces, 11, 1988–1995 (2019). https://doi.org/10.1021/acsami.8b15877.
15. Mohamed, S.G., Tsai, Y.Q., Chen, C.J., et al. Ternary spinel MCo2O4 (M = Mn, Fe, Ni, and Zn) porous nanorods as bifunctional cathode materials for lithium–O2 batteries. ACS Applied Materials & Interfaces, 7, 12038–12046 (2015). https://doi.org/10.1021/acsami.5b02601.
16. Niu, Q., Chen, B., Guo, J., et al. Flexible, porous, and metal–heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn–air battery. Nano-Micro Letters, 11, 8 (2019). https://doi.org/10.1007/s40820-018-0231-0.
17. Liu, W., Placke, T., & Chau, K.T. Overview of batteries and battery management for electric vehicles. Energy Reports, 8, 4058–4084 (2022). https://doi.org/10.1016/j.egyr.2022.03.016.
18. Sun, Q., Dai, L., Luo, T., Wang, L., Liang, F., & Liu, S. Recent advances in solid-state metal–air batteries. Carbon Energy, 2022, 1–23. https://doi.org/10.1002/cey2.276.
19. Wang, Y., Sun, Y., Ren, W., Zhang, D., Yang, Y., Yang, J., Wang, J., Zeng, X., & NuLi, Y. Challenges and prospects of Mg–air batteries: A review. Energy Materials, 2, 200024 (2022). https://doi.org/10.20517/energymater.2022.20.
20. Wang, L., Snihirova, D., Deng, M., Vaghefinazari, B., Xu, W., Höche, D., Lamaka, S.V., & Zheludkevich, M.L. Sustainable aqueous metal–air batteries: An insight into electrolyte system. Energy Storage Materials, 52, 573–597 (2022). https://doi.org/10.1016/j.ensm.2022.08.032.
21. Li, J., Zhang, K., Wang, B., & Peng, H. Light-assisted metal–air batteries: Progress, challenges, and perspectives. Angewandte Chemie International Edition, 61, e202213026 (2022). https://doi.org/10.1002/anie.202213026.
22. Chantavas, A. Global market outlook for solar power. SolarPower Europe, 2022, 1–25. https://www.solarpowereurope.org/press-releases/world-installs-a-record-168-gw-of-solar-power-in-2021-enters-solarterawatt-age.
23. Liu, Y., Lu, X., Lai, F., Liu, T., Shearing, P.R., Parkin, I.P., He, G., & Brett, D.J.L. Rechargeable aqueous Zn-based energy storage devices. Joule, 5, 2845–2903 (2021). https://doi.org/10.1016/j.joule.2021.10.011.
24. Murali, A.P., Duraisamy, S., Samuthiram, S., et al. Current and emerging methods for manufacturing of closed pore metal foams and its characteristics: A review. Journal of Materials Science, 60, 1187–1227 (2025). https://doi.org/10.1007/s10853-024-10318-y.
25. Mahto, R.P., Bhadauria, A., Bandhu, D., et al. A study on porosity and mechanical properties of the open aluminum metal foam through spark plasma sintering SDP technique. International Journal of Advanced Manufacturing Technology, 136, 4407–4417 (2025). https://doi.org/10.1007/s00170-025-15077-x.
26. Sun, S., Zhang, Z., Yan, L., et al. A novel superimposed porous copper/carbon film derived from polymer matrix as catalyst support for metal–air battery. Journal of Porous Materials, 29, 249–255 (2022). https://doi.org/10.1007/s10934-021-01163-4.
27. Jiao, X., Liu, Y., Cai, X., et al. Progress of porous Al-containing intermetallics fabricated by combustion synthesis reactions: A review. Journal of Materials Science, 56, 11605–11630 (2021). https://doi.org/10.1007/s10853-021-06035-5.
Review
For citations:
Zhukeshov A.M., Abdybai U.B., Salimov E.E., Carlos M. COMPARATIVE PERFORMANCE CHARACTERISTICS OF METAL-AIR BATTERIES WITH CAST AND POROUS ELECTRODES. Herald of the Kazakh-British Technical University. 2025;22(4):401-410. https://doi.org/10.55452/1998-6688-2025-22-4-401-410
JATS XML






