HOMOGENIZATION OF ATTRACTORS OF THE CHAFEE–INFANTE EQUATIONS IN A PERFORATED DOMAIN
https://doi.org/10.55452/1998-6688-2025-22-4-324-339
Abstract
This work addresses the averaging problem for the Chafee–Infante equation in a micro-heterogeneous medium. It analyzes the equation with rapidly oscillating terms and dissipation. The model introduces a small parameter and formulates an averaged problem based on its limits. The study proves that the trajectory attractors of the original equation converge to those of the averaged equation. It establishes the relevant theorem. In cases with unique solutions, it investigates the convergence of global attractors, adding further conditions on the nonlinear terms. The work also analyzes singular problems with nontrivial boundary conditions in perforated domains and on cavity boundaries. Here, the averaged equation differs from the original, reflecting the model’s effective averaged characteristics and possibly an extra potential term. As the small parameter approaches zero, the study shows that the attractors converge in Hausdorff distance. The main result is that the attractors of the original Chafee– Infante equation converge to those of the averaged (limit) equation as the small parameter approaches zero. This work establishes this convergence for the first time in the context of homogenization in a periodically perforated medium, highlighting the scientific novelty and relevance of the findings. This research advances averaging methods for differential operators and may apply to solutions of nonlinear differential equations.
About the Authors
A. M. ToleubayKazakhstan
PhD
Semey
A. Т. Кaripova
Kazakhstan
PhD student
Astana
References
1. Bekmaganbetov, K.A., Chechkin, G.A., Chepyzhov, V.V. Attractors and a 'strange term' in homogenized equation. C R Mec., 348(5), 351–359 (2020). https://doi.org/10.5802/crmeca.15
2. Bekmaganbetov, K.A., Chechkin, G.A., Chepyzhov, V.V. 'Strange term' in homogenization of attractors of reaction-diffusion equation in perforated domain. Chaos Solit Fractals., 140, Article ID 110208 (2020). https://doi.org/10.1016/j.chaos.2020.110208
3. Belyaev, A.G., Piatnitski, A.L., Chechkin, G.A. Asymptotic behavior of solution for boundary-value problem in a perforated domain with oscillating boundary. Sib Math J., 39(4), 730–754 (1998). https://doi.org/10.1007/BF02677919
4. Cioranescu, D., Murat, F. Un terme étrange venu d'ailleurs I & II. In: Berzis H, Lions JL, editors. Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Volume II & III. Research Notes in Mathematics, 60 & 70, London: Pitman; 1982, pp. 98–138 & 154–178.
5. Marchenko, V.A., Khruslov, E.Y. Boundary value problems in domains with fine-grain boundary. Kiev: Naukova Dumka, 1974.
6. Chechkin, G.A., Piatnitski, A.L., Shamaev, A.S. Homogenization: methods and applications. Providence (RI): American Mathematical Society, 2007. ISBN: 978-0-8218-4309-6
7. Jikov, V.V., Kozlov, S.M., Oleinik, O.A. Homogenization of differential operators and integral functionals. Berlin: Springer, 1994. https://link.springer.com/book/10.1007/978-3-642-84659-5
8. Sanchez-Palencia, É. Homogenization techniques for composite media. Berlin: Springer, 1987. https://doi.org/10.1007/3-540-17616-0
9. Babin, A.V., Vishik, M.I. Attractors of evolution equations. Amsterdam: Elsevier, 1992. https://doi.org/10.1016/S0168-2024(08)70270-4
10. Chepyzhov, V.V., Vishik, M.I. Attractors for equations of mathematical physics. Providence (RI): American Mathematical Society, 2002. https://doi.org/10.1051/cocv:2002056
11. Temam, R. Infinite-dimensional dynamical systems in mechanics and physics. New York (NY): Springer, 1988. (Applied Mathematics Series; 68). https://doi.org/10.1007/978-1-4684-0313-8
12. Efendiev, M., Zelik, S. Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization. Ann Inst H Poincaré Anal Non Linéaire, 19, 961–989 (2002). https://doi.org/10.1016/S0294-1449(02)00115-4
13. Ilyin, A.A. Averaging principle for dissipative dynamical systems with rapidly oscillating right-hand sides. Sb Math., 187, 635–677 (1996). https://doi.org/10.1070/SM1996v187n05ABEH000126
14. Chechkin, G.A., Chepyzhov, V.V., Pankratov, L.S. Homogenization of trajectory attractors of Ginzburg-Landau equations with randomly oscillating terms. Discrete Continuous Dyn Syst Ser B., 23(3), 1133–1154 (2018). https://doi.org/10.3934/dcdsb.2018145
15. Belyaev, A.G., Piatnitski, A.L., Chechkin, G.A. Averaging in a perforated domain with an oscillating third boundary condition. Sb Math.,192(7), 933–949 (2001). https://doi.org/10.1070/SM2001v192n07ABEH000576
16. Lions, J-L. Quelques méthodes de résolutions des problèmes aux limites non linéaires. Paris: Dunod, GauthierVillars, 1969. https://www.scribd.com/document/482201537/96314508
17. Diaz, J.I., Gomez-Castro, D., Shaposhnikova, T.A., et al. Classification of homogenized limits of diffusion problems with spatially dependent reaction over critical-size particles. Appl Anal., 98(1–2), 232–255 (2018). https://doi.org/10.1080/00036811.2018.1441997
18. Chechkin, G.A., Piatnitski, A.L. Homogenization of boundary-value problem in a locally periodic perforated domain. Appl Anal., 71(1–4), 215–235 (1999). https://doi.org/10.1080/00036819908840714
19. Chepyzhov, V.V., Vishik, M.I. Trajectory attractors for reaction-diffusion systems. Top Meth Nonlinear Anal J Julius Schauder Center., 7(1), 49–76 (1996). https://doi.org/10.12775/TMNA.1996.002
20. Chepyzhov, V.V., Goritsky, A.Y., Vishik, M.I. Integral manifolds and attractors with exponential rate for nonautonomous hyperbolic equations with dissipation. Russ J Math Phys., 12, 17–39 (2005).
21. Chepyzhov, V.V., Vishik, M.I., Wendland, W.L. On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging. Discrete Contin Dyn Syst., 12, 27–38 (2005). https://doi.org/10.3934/dcds.2005.12.27
22. Vishik, M.I., Chepyzhov, V.V. Approximation of trajectories lying on a global attractor of a hyperbolic equation with an exterior force that oscillates rapidly over time. Sb Math., 194, 1273–1300 (2003). https://doi.org/10.1070/SM2003v194n09ABEH000765
23. Chueshov, I., Schmalfuß, B. Averaging of Attractors and Inertial Manifolds for Parabolic PDEs with Random Coefficients. Applied Mathematics and Optimization, 2005 (5), 461–492, 10.1515/ans-2005-0402
24. Carvalho, A.N., Langa, J.A., Robinson, J.C. Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems. Springer, 2013. V. 182. https://doi.org/10.1007/978-1-4614-4581-4
25. Solonnikov, V.A. On the boundary-value problems for linear parabolic systems of differential equations of the general type.Trudi MIAN. 1965. V.83.
Review
For citations:
Toleubay A.M., Кaripova A.Т. HOMOGENIZATION OF ATTRACTORS OF THE CHAFEE–INFANTE EQUATIONS IN A PERFORATED DOMAIN. Herald of the Kazakh-British Technical University. 2025;22(4):324-339. (In Kazakh) https://doi.org/10.55452/1998-6688-2025-22-4-324-339
JATS XML






