MOBILE SENSORS FARM SUPPORT
https://doi.org/10.55452/1998-6688-2025-22-4-178-195
Abstract
Agriculture is becoming increasingly demanding due to climate change challenges, necessitating continuous monitoring and changes, including soil assessment for precision agricultural requirements. Agricultural soils are heavily utilized by farmers through the application of pesticides and nitrate phosphates to enhance yield. The exacerbation of flood-drought conditions is resulting in soil irregularity, necessitating meticulous soil monitoring at each location. Soil monitoring is prohibitively costly for numerous farmers. To address this issue, the implementation of a compact, energy-efficient, low-cost mobile robotic platform equipped with various sensors for soil monitoring would be prudent. Farmers can remotely manage, analyze surface upper soil strata, and examine topography. The relevance to research activities and active recreation may result in a low cost for a series of behaviors that enhance comprehension of the examined environmental details. The specialized three-wheeled mobility platform is a novel apparatus engineered for autonomous navigation and task execution. The robot’s three-wheel design confers exceptional mobility and stability, enabling effective operation in restricted areas and across various terrains. It is outfitted with sensors and a control system that guarantees accurate navigational control and obstacle evasion. The programming and modification features enable the robot to be tailored for specialized functions, including data collecting, small load transfer, and environmental monitoring. The robot is applicable for educational, scientific, industrial, and domestic uses. Consequently, the three-wheeled mobile robot serves as a versatile and promising platform for the advancement of contemporary robotic systems.
About the Authors
R. V. YussupovKazakhstan
Master’s student
Almaty
S. A. Kulbekova
Kazakhstan
MSc
Almaty
R. S. Amanzholova
Kazakhstan
MSc
Almaty
J. Sagin
Kazakhstan
PhD, Professor
Almaty
References
1. Abibulla, B. Auyil sharuashylyginda energiya tiimdiligin arttyru adisteri // S.Seifullinnin 125 jyldygyna arnalgan «Seifullin oqulary – 15: jastar, gylym, tekhnologiya, jana ideyalar men perspektivalar» atty halyqaralyq gylymi-teoriyalyq konferentsiya materialdary, 2019, pp. 237–239. URL: https://kazatu.edu.kz/assets/i/science/sf15-energo-124.pdf
2. Aitkhozhin, S.K., Balkibaeva, A.M., Ramazanova, R.Kh., Ermekov, F.K., Qarsybaeva, Q.A. Qazaqstandagy naqty auyil sharuashylygy zhobasynyn ekonomikalik bagalauy. Periodico Tche Quimica, 16 (33), 304–314 (2019). https://doi.org/10.52571/ptq.v16.n33.2019.319_periodico33_pgs_304_314.pdf
3. Alakunova, A. Topyraqty taldau 1034 somnan: Khemizatsiya departamenti sharuarlarga bagany zhariyalady. Aqparat. 2025. URL: https://aqparat.info/news/2025/01/28/10747876-analiz_pochvy_ot_1034_somov_v_departamen.html
4. Alcolea, J. Auyil sharuashylygyna arnalgan en zhaksy 10 Vision AI artyqshylyqtary. Ultralitika. 2024. URL: https://www.ultralytics.com/ru/blog/top-10-benefits-of-using-vision-ai-for-agriculture
5. Averchenko, D. Tobylda koktaigaq bolady: qostanailyqtarga akimdik undeu tastady. QazAqparat. 2025. URL: https://www.inform.kz/ru/led-budut-vzrivat-na-tobole-k-kostanaytsam-obratilis-v-akimate-7a3228
6. Belyaeva, E. Shygys Qazaqstan oblysynda qutqarushylar 80 myn sharshy metrdan astam muzdy zharyp zhiberdi. Zakon. 2025, 15 nauryz. URL: https://www.zakon.kz/sobytiia/6470465-bolee-80-tysyachkvadratnykh-metrov-lda-vzorvali-spasateli-v-vko.html
7. Bertocco, M., Cappellazzo, S., Flammini, A., Parvis, M. Multilevel architecture for distributed data collectionю Proc. 19th IEEE Instrumentation and Measurement Technology Conference (IMTC/2002). 2003. https://doi.org/10.1109/imtc.2002.1007138
8. Budikharto, V., Chovanda, A., Gunavan, A.S., Irwansyah, E., Suroso, J.S. Review and progress of autonomous UAVs, delivery and GIS in agriculture. Proc. 2nd World Symposium on Communication Engineering (WSCE), 2019, pp. 205–209. https://doi.org/10.1109/wsce49000.2019.9041004
9. Carbone, C., Garibaldi, O., Kurt, Z. Swarm robotics as a solution for crop monitoring in precision agriculture. KnE Engineering, 3(1), 552 (2018). https://doi.org/10.18502/keg.v3i1.1459
10. Debichka, M., Dzhamroz, E., Bekier, Dzh., Chvielg-Piasetska, I., Kokovich, A. Turmystyk qatty qaldyqtar kompostynyn topyraqtagy fosfor formalaryna aseri. Agronomy. 13(5), 1234 (2023).https://doi.org/10.3390/agronomy13051234
11. Demush, R. Kompiyterlik korudin (zhane konvolyutsiyalyk nei̇rondyq zhelerdin) qysqasha tarikhy. HackerNoon. 2019. URL: https://hackernoon.com/a-brief-history-of-computer-vision-and-convolutionalneural-networks-8fe8aacc79f3
12. Dilip, M.R., Navanet, A.V., Ullagaddi, S., Danti, A. Auyilsharuashylyq drondarynyn turleri men qoldanyluyin zertteu zhane taldau. Proc. 5th Int. Conf. on Research in Computational Intelligence and Communication Networks (ICRCICN), 2020, pp. 181–185. https://doi.org/10.1109/icrcicn50933.2020.9296195
13. Doroshkevich, G. Qazaqstandyq azamat fermasyn cifrlq zhyiyge aĭnaldyryp, zhetistikke zhetti. Sandyk biznes. 2025, 19 nauryz. URL: https://digitalbusiness.kz/2025-03-19/kazahstanets-sdelal-svoe-fermerskoehozyaystvo-tsifrovim-i-preuspel-vot-ego-istoriya/
14. Egorova, N. Auyil sharuashylygyndagy shagýn kasipkerliktin maseleleri. Koncept, 48–51 (2016). URL: https://e-koncept.ru/2017/770431.htm
15. Ferreira, C.S., Seifollahi-Aghmiuni, S., Destouni, G., Ghajarnia, N., Kalantari, Z. Soil degradation in the European Mediterranean region: processes, status and consequences. Science of the Total Environment, 805, 150106 (2021). https://doi.org/10.1016/j.scitotenv.2021.150106
16. Furtak, K., Wolinska, A. Impact of extreme weather events on soil moisture, soil quality and agriculture as a consequence of climate change – a review. CATENA, 231, 107378 (2023). https://doi.org/10.1016/j.catena.2023.107378
17. Gabdualieva, R., Melekova, A., Zhakupova, A., Bazarova, B. Qazaqstannyn auyil sharuashylygy salasyn cifrlanndyru. BIO Web of Conferences, 82, 05038 (2024). https://doi.org/10.1051/bioconf/20248205038
18. Grigoruk, V.V., Akimbekova, Ch.U., Klimov, E.V. Organikalyk auyil sharuashylygyn institutsionaldyq zhane ekonomikalq yntalandyru: sholu, derekter zhane engizu boiynsha usynystar. LEM Publishing, 2024. 72 p.
19. Gonsales-Dugo, V., Zarko-Tezhada, P., Nikolas, E., Nortes, P.A., Alarkon, Dzh.Zh., Intrigliolo, D.S., Fereres, E. UAV thermography to assess water status variability in five fruit tree species in a commercial orchard. Precision Agriculture, 14 (6), 660–678 (2013). https://doi.org/10.1007/s11119-013-9322-9
20. Groover, P.M. Automation and robotics in manufacturing applications. Encyclopedia Britannica. 2025, 12 March. URL: https://www.britannica.com/technology/automation/Manufacturing-applications-ofautomation-and-robotics
21. Rekhman, V.U., Kundkhar, M.A., Afridi, S.K., Albasha, L., Smaili, I.Kh., Tuti, E., Audiya, M., Zakhruni, V., Makharik, I., Akhmed, M. The role of 5G networks in transforming agriculture for sustainable development: a comprehensive review. Energy Nexus, 100368 (2025). https://doi.org/10.1016/j.nexus.2025.100368
22. Ruiz, J., Torres, E., Villarreal, E. Design and construction of a mobile robot with regenerative braking in DC motors. Int. Journal of Materials Science and Engineering, 2(1), 6–9 (2014). https://doi.org/10.12720/ijmse.2.1.6-9
23. Seidalieva, U., Ilipbaeva, L., Taisarieva, K., Smailov, N., Matson, E.T. Drondardy anyqtau zhane zhiktelu adisterindegi zhetistikter men qíyndyqtar: zamanaýi sholu. Sensors, 24(1), 125 (2023). https://doi.rg/10.3390/s24010125
24. Shi, S., Zhu, L., Luo, Z., Qiu, H. Quantitative analysis of climatic and anthropogenic factors contribution to net primary productivity change, China. Remote Sensing, 15(3), 789 (2023). https://doi.org/10.3390/rs15030789
25. Silverberg, B.D. Lasers, drones and AI: the future of weed control. BBC News. 2023. URL: https://www.bbc.com/news/business-64742513
26. Steidl, V., Bamber, J.L., Zhu, X.X. Physics-informed machine learning for glacier ice thickness estimation: case study of Svalbard. The Cryosphere, 19 (2), 645–661. https://doi.org/10.5194/tc-19-645-2025
27. Striklend, S. Making the 5G precision agriculture connection. Ericsson Blog. 2022. URL: https://www.ericsson.com/en/blog/north-america/2022/making-the-5g-precision-agriculture-connection
28. Tkacik, M., Brezina, A., Jadlovska, S. Design of a modular mobile robot platform prototype. IFAC-PapersOnLine, 52(27), 192–197 (2019). https://doi.org/10.1016/j.ifacol.2019.12.755
29. Tileubaev, A., Bobozhonov, I., Gagalyuk, T., Glauben, T. The relevance and financial performance of business groups in the agrarian sector of transition economies: the case of Russian agroholdings. Journal of East European Management Studies, 27(2), 280–310 (2022). https://doi.org/10.5771/0949-6181-2022-2-280
30. Trianni, V. Robot swarms for precision agriculture. Consiglio Nazionale Delle Ricerche. 2016. URL: https://www.cnr.it/it/comunicato-stampa/7077/robot-swarms-for-precision-agriculture
31. Tripicchio, P., Satler, M., Dabisias, G., Ruffaldi, E., Avizzano, C.A. Towards smart agriculture and sustainable farming with drones. Proc. Int. Conf. on Intelligent Environments (Prague, Czech Republic). 2015, pp. 140–143. https://doi.org/10.1109/ie.2015.29
32. Tsirtsakis, P., Zacharis, G., Maraslidis, G.S., Fragulis, G.F. Deep learning for object recognition: a comprehensive review on models and algorithms. Int. Journal of Cognitive Computing in Engineering. 2025. https://doi.org/10.1016/j.ijcce.2025.01.004
33. Turysbekova Qubylmaly klimatта Qazaqstandy ne kutip tur: sarapshylardyn pikirі. Kazpravda. URL: https://kazpravda.kz/n/chto-zhdet-kazahstan-v-usloviyah-izmenyayushchegosya-klimata-mnenie-eksperta/
Review
For citations:
Yussupov R.V., Kulbekova S.A., Amanzholova R.S., Sagin J. MOBILE SENSORS FARM SUPPORT. Herald of the Kazakh-British Technical University. 2025;22(4):178-195. (In Kazakh) https://doi.org/10.55452/1998-6688-2025-22-4-178-195
JATS XML






