Preview

Вестник Казахстанско-Британского технического университета

Расширенный поиск

КОМПЛЕКСНАЯ МЕТОДИКА ВЫЯВЛЕНИЯ И АНАЛИЗА ИНЦИДЕНТОВ БЕЗОПАСНОСТИ В БЕСПРОВОДНЫХ СЕНСОРНЫХ СЕТЯХ

https://doi.org/10.55452/1998-6688-2025-22-4-40-59

Аннотация

Статья посвящена вопросам киберфизической безопасности беспроводных сенсорных сетей (БСС). Современные БСС уязвимы к широкому классу атак, таких как sinkhole и wormhole-атаки, атаки «человек посередине», атаки подмены данных, универсальные сетевые атаки и др. На практике возможности по защите БСС от данного вида атак затруднены вследствие разнообразия возможных воздействий, узкоспециализированной направленности инфраструктуры и ограниченности ресурсов узлов сети. В настоящей статье предлагается комплексная методика выявления инцидентов безопасности в БСС для эффективного обнаружения атак и реагирования на инциденты, что позволит минимизировать потенциальный ущерб и обеспечить бесперебойную работу таких сетей. К элементам новизны методики относится ее комплексность, способность выявлять разнообразные киберфизические воздействия и обеспечивать высокую точность и полноту обнаружения инцидентов, учитывая распределенную структуру и динамику изменений в составе узлов БСС. Методика апробирована на фрагменте сети, функционирующей по протоколу ZigBee для контроля характеристик состояния атмосферного воздуха промышленного объекта, города. Разработанная методика будет способствовать повышению качества и своевременности обнаружения инцидентов безопасности в беспроводных сенсорных сетях, что позволит улучшить устойчивость сетей к внешним и внутренним злонамеренным воздействиям и предотвращать длительные перебои в работе инфраструктуры в случае успешных атак.

Об авторах

Т. К. Жукабаева
Международный научный комплекс «Астана»; Евразийский национальный университет им. Л.Н. Гумилева
Казахстан

PhD, профессор

г. Астана 



Е. М. Марденов
Международный научный комплекс «Астана»; Astana International University
Казахстан

магистр

г. Астана 



А. Ж. Танирбергенов
Евразийский национальный университет им. Л.Н. Гумилева
Казахстан

к.т.н., и.о. доцента

г. Астана 



Список литературы

1. Alansari, Z., Anuar, N.B., Kamsin, A., Belgaum, M.R. A systematic review of routing attacks detection in wireless sensor networks. PeerJ Computer Science, 8, e1135 (2022).

2. Kaushal, K., Kaur, T. A survey on attacks of WSN and their security mechanisms. International Journal of Computer Applications, 118 (18) (2015).

3. Ali, A., Ming, Y., Chakraborty, S., Iram, S. A comprehensive survey on real-time applications of WSN. Future Internet, 9 (4), 77 (2017).

4. Kamaruzzaman, M., Chandra, A. Integration of wireless sensor network in robotics. Machine Learning for Robotics Applications, 71–84 (2021).

5. Elsadig, M.A. Detection of denial-of-service attack in wireless sensor networks: A lightweight machine learning approach. IEEE Access, 11, 83537–83552 (2023).

6. Ismail, S., El Mrabet Z., Reza, H. An ensemble-based machine learning approach for cyber-attacks detection in wireless sensor networks. Applied Sciences, 13 (1), 30 (2022).

7. Sharma, N., Kaushik, I., Agarwal, V.K., Bhushan, B., Khamparia, A. Attacks and security measures in wireless sensor network. Intelligent Data Analytics for Terror Threat Prediction: Architectures, Methodologies, Techniques and Applications, 237–268 (2021).

8. Oztoprak, A., Hassanpour, R., Ozkan, A., Oztoprak, K. Security challenges, mitigation strategies, and future trends in wireless sensor networks: A review. ACM Computing Survey, 57 (4), 1–29 (2024).

9. Monjur, M.M.R., Heacock, J., Calzadillas, J., Mahmud, M.S., Roth, J., Mankodiya, K., Yu, Q. Hardware security in sensor and its networks. Frontiers in Sensors, 3, 850056 (2022).

10. Chen, Y.Y., Xu, B., Long, J. Information security assessment of wireless sensor networks based on bayesian attack graphs. Journal of Intelligent & Fuzzy Systems, 41 (3), 4511–4517 (2021).

11. Subasini, C.A., Karuppiah, S.P., Sheeba, A., Padmakala, S. Developing an attack detection framework for wireless sensor network- based healthcare applications using hybrid convolutional neural network. Transactions on Emerging Telecommunications Technologies, 32 (11), e4336 (2021).

12. Delwar, T.S., Aras, U., Mukhopadhyay, S., Kumar, A., Kshirsagar, U., Lee, Y., et al. The intersection of machine learning and wireless sensor network security for cyber-attack detection: a detailed analysis. Sensors, 24 (19), 6377 (2024).

13. Premkumar, M., Ashokkumar, S.R., Jeevanantham, V., Mohanbabu, G., AnuPallavi, S. Scalable and energy efficient cluster based anomaly detection against denial of service attacks in wireless sensor networks. Wireless Personal Communications, 129 (4), 2669–2691 (2023).

14. Chen, N., Qiu, T., Daneshmand, M., Wu, D.O. Robust networking: Dynamic topology evolution learning for Internet of Things. ACM Transactions on Sensor Networks (TOSN),17 (3), 1–23 (2021).

15. Duan, G., Lv H., Wang H., Feng G., Li X. Practical cyber attack detection with continuous temporal graph in dynamic network system. IEEE Transactions on Information Forensics and Security (2024).

16. Nguyen, V.L., Lin, P.C., Hwang, R.H. Energy depletion attacks in low power wireless networks. IEEE Access, 7, 51915–51932 (2019).

17. Poornima, I.G.A., Paramasivan, B. Anomaly detection in wireless sensor network using machine learning algorithm. Computer Communications, 151, 331–337 (2020).

18. Ayadi, A., Ghorbel, O., Obeid, A.M., Abid, M. Outlier detection approaches wireless sensor networks: A survey. Computer Networks, 129, 319–333 (2017).

19. Rajasegarar, S., Leckie, C., Palaniswami, M. Anomaly detection in wireless sensor networks. IEEE Wireless Communications, 15 (4), 34–40 (2008).

20. Lakshmi, H.N., Anand, S., Sinha, S. Flooding attack in wireless sensor network-analysis and prevention. International Journal of Engineering and Advanced Technology, 8 (5), 1792–1796 (2019).

21. Dubey, A., Meena, D., Gaur, S. A survey in hello flood attack in wireless sensor networks. International Journal of Engineering Research and Technology, 3, 1882–1887 (2014).

22. Hu, Y.C., Perrig, A., Johnson, D.B. Wormhole attacks in wireless networks // IEEE Journal on Selected Areas in Communications, 24 (2), 370–380 (2006).

23. Rehman, A.U., Rehman, S.U., Raheem, H. Sinkhole attacks in wireless sensor networks: A survey. Wireless Personal Communications, 106, 2291–2313 (2019).

24. Xiao, L., Greenstein, L.J., Mandayam, N.B., Trappe, W. Channel-based detection of sybil attacks in wireless networks. IEEE Transactions on Information Forensics and Security, 4 (3), 492–503 (2009).

25. de Oliveira, M.S., Steffen, V., de Francisco, A.C., Trojan, F. Integrated data envelopment analysis, multi-criteria decision making, and cluster analysis methods: Trends and perspectives. Decision Analytics Journal, 8, 100271 (2023).

26. Jiang, Y., Atif, Y., Ding, J. Cyber-physical systems security based on a cross-linked and correlated vulnerability database. International Conference on Critical Information Infrastructures Security (Cham: Springer International Publishing, 2019), pp. 71–82.

27. Marsh, D.W., Baldwin, R.O., Mullins, B.E., Mills, R.F., Grimaila, M.R. A security policy language for wireless sensor networks. Journal of Systems and Software, 82 (1), 101–111 (2009).

28. Livani, M.A., Abadi, M. A PCA-based distributed approach for intrusion detection in wireless sensor networks. 2011 International Symposium on Computer Networks and Distributed Systems (CNDS) (IEEE, 2011), pp. 55–60.

29. Luo, T., Nagarajan, S.G. Distributed anomaly detection using autoencoder neural networks in WSN for IoT. 2018 IEEE International Conference on Communications (ICC) (IEEE, 2018), pp. 1–6.

30. John, A., Isnin, I.F.B., Madni, S.H.H., Faheem, M. Cluster-based wireless sensor network framework for denial-of-service attack detection based on variable selection ensemble machine learning algorithms. Intelligent Systems with Applications, 22, 200381 (2024).

31. Zahra, F., Jhanjhi, N.Z., Brohi, S.N., Khan, N.A., Masud, M., AlZain, M.A. Rank and wormhole attack detection model for RPL-based internet of things using machine learning. Sensors, 22 (18), 6765 (2022).

32. Alghamdi, R., Bellaiche, M. A cascaded federated deep learning based framework for detecting wormhole attacks in IoT networks. Computers & Security, 125, 103014 (2023).

33. Zhukabayeva, T., et al. A traffic analysis and node categorization-aware machine learning-integrated framework for cybersecurity intrusion detection and prevention of WSNs in smart grids. IEEE Access, 2024.

34. Adamova, A., Zhukabayeva, T., Mardenov, Y. Machine learning in action: An analysis of its application for fault detection in wireless sensor networks. 2023 IEEE International Conference on Smart Information Systems and Technologies (SIST) (IEEE, 2023), pp. 506–511.

35. Mardenov, Y., Adamova, A., Zhukabayeva, T., Othman, M. Enhancing fault detection in wireless sensor networks through support vector machines: A comprehensive study. Journal of Robotics and Control (JRC), 4 (6), 868–877 (2023).

36. Zhukabayeva, T., Adamova, A., Karabayev, N., Mardenov, Y., Satybaldina, D. Comprehensive vulnerability analysis and penetration testing approaches in smart city ecosystems. 2024 8th International Symposium on Innovative Approaches in Smart Technologies (ISAS) (IEEE, 2024), pp. 1–6.


Рецензия

Для цитирования:


Жукабаева Т.К., Марденов Е.М., Танирбергенов А.Ж. КОМПЛЕКСНАЯ МЕТОДИКА ВЫЯВЛЕНИЯ И АНАЛИЗА ИНЦИДЕНТОВ БЕЗОПАСНОСТИ В БЕСПРОВОДНЫХ СЕНСОРНЫХ СЕТЯХ. Вестник Казахстанско-Британского технического университета. 2025;22(4):40-59. https://doi.org/10.55452/1998-6688-2025-22-4-40-59

For citation:


Zhukabayeva Т.К., Mardenov E.M., Тanirbergenov A. COMPLEX TECHNIQUE FOR DETECTION AND ANALYSIS OF SECURITY INCIDENTS IN WIRELESS SENSOR NETWORKS. Herald of the Kazakh-British Technical University. 2025;22(4):40-59. (In Russ.) https://doi.org/10.55452/1998-6688-2025-22-4-40-59

Просмотров: 73

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)