INFLUENCE OF PARAMETERS OF LOW-COST SYNTHESIS METHODS ON ZINC OXIDE MORPHOLOGY
https://doi.org/10.55452/1998-6688-2025-22-3-290-301
Abstract
The morphology of zinc oxide (ZnO) powders synthesised via a modified microwave assisted method under varying heating parameters, as well as by chemical bath deposition, was investigated. Image analysis revealed clear correlations between synthesis parameters and structural features. Increasing the microwave heating time at constant power led to a consistent transformation from loose nanoparticles to dense, well-faceted microstructures. In contrast, reducing heating power slowed crystallisation and agglomeration, preserving a finer, more porous structure. Scanning electron microscopy also demonstrated significant morphological differences in samples grown by chemical bath deposition, which were strongly influenced by the initial molar concentration of zinc acetate while keeping the concentrations of other solution components constant. These findings confirm that low-cost, environmentally friendly synthesis approaches can be used to control ZnO particle morphology through careful adjustment of precursor concentrations, heating time, and microwave power. Photocatalytic degradation tests of rhodamine B demonstrated a strong link between particle morphology and degradation rate. The highest rate (~0.5 h– ¹) was recorded for a chemically precipitated sample, whereas the lowest (~0.1 h–¹) corresponded to a microwavesynthesised sample.
Keywords
About the Authors
A. T. KadauKazakhstan
Master's degree
Almaty
Zh. K. Kalkozova
Kazakhstan
Cand.Phys.-Math.Sc., Associate Professor
Almaty
L. V. Gritsenko
Kazakhstan
PhD, Associate Professor
Almaty
A. A. Markhabayeva
Kazakhstan
PhD
Almaty
Kh. A. Abdullin
Russian Federation
Dr.Phys.-Math.Sc., Professor
Almaty
References
1. Zhao, Z., Agulto, V.C., Iwamoto, T., Kato, K., Yamanoi, K., Shimizu, T., Sarukura, N., Fujii, T., Fukuda, T., Yoshimura, M., Nakajima, M. Investigation of the optical and electrical properties of zinc oxide by terahertz time domain ellipsometry. Optical Materials: X, 24, 100352 (2024). https://doi.org/10.1016/j.omx.2024.100352.
2. Pavan Kumar, M.A., Suresh, D., Sneharani, A.H. Centella asiatica mediated facile green synthesis of nano zinc oxide and its photo-catalytic and biological properties. Inorganic Chemistry Communications, 133, 108865 (2021). https://doi.org/10.1016/j.inoche.2021.108865.
3. Abdullin, A.Kh., Cicero, G., Gritsenko, L.V., Kumekov, S.E., Markhabaeva, A.A. Effect of annealing and hydrogen plasma treatment on the luminescence and persistent photoconductivity of polycrystalline ZnO films. Journal of Applied Physics, 121, 245303-1–245303-6 (2017). https://doi.org/10.1063/1.4989826.
4. Haygood, K.J.F., Dinny Harnany, Jamasri, Santos, G.N.C., Muflikhun, M.A., Promising CO2 gas sensor application of zinc oxide nanomaterials fabricated via HVPG technique. Heliyon, 10 (17), e36692 (2024). https://doi.org/10.1016/j.heliyon.2024.e36692.
5. Olavo Cardozo, Ricardo Maia-Junior, Sajid Farooq, Braulio Tostes, Andreas Stingl, Patricia Farias, Severino Alves Junior, Zinc oxide nanostructures for third generation solar cells: A comprehensive review, Solar Energy, 299, 113710 (2025). https://doi.org/10.1016/j.solener.2025.113710.
6. Kedruk, Y.Y., Contestabile, A., Zeng, J., Fontana, M., Laurenti, M., Gritsenko, L.V., Cicero, G., Pirri, C.F., Abdullin, K.A. Morphology Effects on Electro- and Photo-Catalytic Properties of Zinc Oxide Nanostructures. Nanomaterials, 13, 2527 (2023). https://doi.org/10.3390/nano13182527.
7. Rana, A., Kumar, P., Thakur, N., Kumar, S., Kumar, K., Thakur, N. Investigation of photocatalytic, antibacterial and antioxidant properties of environmentally green synthesized zinc oxide and yttrium doped zinc oxide nanoparticles. Nano-Structures & Nano-Objects, 38, 101188 (2024). https://doi.org/10.1016/j.nanoso.2024.101188.
8. Ulker, G., Penlik, Y., Gorduk, S. Synthesis, characterization and investigation of photocatalytic activity of ZnO Nanoparticles from Tilia Tomentosa (silverly linden) plant by green synthesis method. Journal of Molecular Structure, 1344, 142929 (2025). https://doi.org/10.1016/j.molstruc.2025.142929.
9. Arepalli, V.K., Yang, E., Patil, A.A., Wi, J.-S., Park, J.S., Lee, J.-M., Lee, S., Chung, Ch.-H. ZnO nanowire broadband ultra-wide-angle optical diffusers grown by aqueous chemical bath deposition. Journal of Alloys and Compounds, 1008, 176660 (2024). https://doi.org/10.1016/j.jallcom.2024.176660.
10. Gilani, S.E.H., Younas, M., Nazar, R., Rasheed, M.H., Mehmood, U. Microwave-assisted synthesis of ZnO nanostructured photoanodes for advanced dye-sensitized solar cells. Materials Letters, 400, 139146 (2025). https://doi.org/10.1016/j.matlet.2025.139146.
11. Rustembekkyzy, K., Sabyr, M., Kanafin, Y.N., Khamkhash, L., Atabaev, T.Sh. Microwave-assisted synthesis of ZnO structures for effective degradation of methylene blue dye under solar light illumination. RSC Advances, 14 (23), 16293–16299 (2024). https://doi.org/10.1039/d4ra02451f.
12. Ahmed, M., Coetsee, L., Goosen, W.E., Urgessa, Z.N., Botha, J.R., Venter, A. Characterization of Bi-doped ZnO nanorods prepared by chemical bath deposition method. Physica B: Condensed Matter, 666, 415105 (2023). https://doi.org/10.1016/j.physb.2023.415105.
13. Zhu, J., Feng, Y., Dai, B., Qi, Y. Morphology and orientation controlling of ZnO nanofibers via chemical bath deposition. Materials Chemistry and Physics, 305, 128028 (2023). https://doi.org/10.1016/j.matchemphys.2023.128028.
14. Sandhu, G.S., Nine, M.J., Purasinhala, K., Dadkhah, M., Hassan, K., Losic, D. Morphology and charge effect of ZnO nanostructures on the performance of anticorrosion coatings. Surfaces and Interfaces, 69, 106750 (2025). https://doi.org/10.1016/j.surfin.2025.106750.
15. Alp, E., Olivieri, F., Aulitto, M., Castaldo, R., Contursi, P., Cocca, M., Gentile, G. The effect of ZnO nanoparticles morphology on the barrier and antibacterial properties of hybrid ZnO/graphene oxide/montmorillonite coatings for flexible packaging. Surfaces and Interfaces, 55, 105307 (2024). https://doi.org/10.1016/j.surfin.2024.105307.
16. Kowalik, P., Konkol, M., Antoniak-Jurak, K., Próchniak, W., Wiercioch, P., Rawski M., Borowiecki T. Structure and morphology transformation of ZnO by carbonation and thermal treatment. Materials Research Bulletin, 65, 149–156 (2015). https://doi.org/10.1016/j.materresbull.2015.01.032.
17. Tolubayeva, D.B., Gritsenko, L.V., Kedruk, Y.Y., Aitzhanov, M.B., Nemkayeva, R.R., Abdullin, K.A. Effect of hydrogen plasma treatment on the sensitivity of ZnO based electrochemical non-enzymatic biosensor. Biosensors, 13, 793 (2023). https://doi.org/10.3390/bios13080793.
18. Uribe-López, M.C., Hidalgo-López, M.C., López-González, R., Frías-Márquez D.M., NúñezNogueira G., Hernández-Castillo D., Alvarez-Lemus M.A. Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. Journal of Photochemistry and Photobiology A: Chemistry, 404, 112866 (2021). https://doi.org/10.1016/j.jphotochem.2020.112866.
19. Hussein S.N.C.M., Fuad F.S.M., Ismail M. Synthesis of zinc oxide nanoparticles for oil upgrading and wax deposition control: effect of calcination temperature. Indonesian Journal of Chemistry, 20 (4). 746–754 (2020). https://doi.org/10.22146/ijc.43317.
20. Dobrozhan, О., Shelest, І., Stepanenko, А., Kurbatov, D., Yermakov, M., Čerškus, A., Plotnikov, S., Opanasyuk, А., Structure, substructure and chemical composition of ZnO nanocrystals and films deposited onto flexible substrates. Materials Science in Semiconductor Processing, 108, 2020, 104879, https://doi.org/10.1016/j.mssp.2019.104879.
Review
For citations:
Kadau A.T., Kalkozova Zh.K., Gritsenko L.V., Markhabayeva A.A., Abdullin Kh.A. INFLUENCE OF PARAMETERS OF LOW-COST SYNTHESIS METHODS ON ZINC OXIDE MORPHOLOGY. Herald of the Kazakh-British Technical University. 2025;22(3):290-301. https://doi.org/10.55452/1998-6688-2025-22-3-290-301