SOLVABILITY OF A MULTIPOINT BOUNDARY VALUE PROBLEM FOR LOADED DIFFERENTIAL EQUATIONS WITH A PARAMETER
https://doi.org/10.55452/1998-6688-2025-22-3-210-220
Abstract
This article is devoted to the solvability questions of a multipoint boundary value problem for a system of loaded differential equations with a parameter. The investigation is carried out using the Dzhumabaev parameterization method. This allows us to reduce the solving of the original boundary value problem to the solving of a system of algebraic equations and Cauchy problems for ordinary differential equations. Modifications have been introduced into the parametrization method algorithms to reduce the influence of boundary conditions on the convergence of the algorithm. Following the specifics of the parametrization method, sufficient conditions for the existence and uniqueness of a solution to the multipoint boundary value problem for systems of loaded differential equations with a parameter have been established. These conditions also ensure the convergence of the modified algorithms. The research results provide a constructive tool for analyzing the behavior of various models described by boundary value problems for loaded differential equations with parameters. The presented example clearly demonstrates the feasibility and effectiveness of the proposed method.
About the Authors
S. M. ТemeshevaKazakhstan
Dr.Phys.-Math.Sc., Leading Researcher, Acting Professor
Almaty
Zh. M. Кadirbayeva
Kazakhstan
Cand.Phys.-Math.Sc., Leading Researcher, Professor
Almaty
S. B. Ashirov
Kazakhstan
Master's student
Almaty
References
1. Geng, F. and Cui, M. Int. J. Comput. Math., 87, 1051–1056 (2010). https://doi.org/10.1080/00207160903023573.
2. Hajji, M.A. Proc. of the international multi-conference of engineers and computer scientists (Hong Kong, 18–20 March 2009).
3. Agarwal, P.R., J. Comput. Appl. Math., 5, 17–24 (1979). https://doi.org/10.1016/0771-050X(79)90022-6.
4. Abdella, K. J. Trivedi. Mathematics, 8, 2104 (2020). https://doi.org/10.3390/math8122104.
5. Saadatmandi, A., Dehghan, M. Commun. Nonlinear Sci. Numer. Simul., 17, 593–601 (2012). https://doi.org/10.1016/j.cnsns.2011.06.018.
6. Li, H., Chen, Y., Zhang, J. Adv. Differ. Equ., 2020, 266 (2020). https://doi.org/10.1186/s13662-020-02604-1.
7. Geng, F.Z. J. Comput. Appl. Math., 236, 1789–1794 (2012). https://doi.org/10.1016/j.cam.2011.10.010.
8. Thompson, H.B., Tisdell, C.C. Math. Comput. Model., 34, 311–318 (2001).
9. Tatari, M., Dehghan, M. J. Vib. Control., 18, 1116–1124 (2012). https://doi.org/10.1177/1077546311408467.
10. Tatari, M., Dehghan, M. Physica Scripta, 73, 672–676 (2006). https://doi.org/10.1088/0031-8949/73/6/023.
11. Zou, Y., Hu, Q., Zhang, R. Appl. Math. Comput., 185, 527–537 (2007). https://doi.org/10.1016/j.amc.2006.07.064.
12. Nakhushev, A.M. Differ. Equat., 18, 72–81 (1982).
13. Aida-zade, K.R., Abdullaev, V.M. Numer. Analys. Appl., 7, 1–14 (2014). https://doi.org/10.1134/S1995423914010017.
14. Dzhumabaev, D.S., Bakirova, E.A., Mynbayeva, S.T. Math. Methods Appl. Sci., 4, 1788–1802 (2020). https://doi.org/10.1002/mma.6003.
15. Dzhenaliev, M.T., Ramazanov, M.I. Nagruzhennye uravnenija - kak vozmushhenija differencial’nyh uravnenij (Almaty: Gylym, 2010). (in Russian).
16. Аssanova, A.T., Imanchiev, A.E., Kadirbayeva, Zh.M. Сomp. math. and math. phys., 58, 508–516 (2018). https://doi.org/10.1134/S096554251804005X.
17. Dzhumabayev, D.S. USSR Comput.Math. Math. Phys., 29, 34–46 (1989).
18. Temesheva, S.M., Dzhumabaev, D.S., Kabdrakhova, S.S. Lobachevskii J Math., 42, 606–612 (2021). https://doi.org/10.1134/S1995080221030173.
19. Bakirova, E.A., Assanova, A.T., Kadirbayeva, Zh.M. Math. Model. Anal., 26, 34–54 (2021). https://doi.org/10.3846/mma.2021.11977.
20. Iskakova, N., Temesheva, S., Uteshova, R. Math. Methods Appl. Sci., 46, 11283–11297 (2023). https://doi.org/10.1002/mma.9181.
21. Bakirova, E.A., Assanova, A.T., Kadirbayeva, Zh.M. Open Math., 22, 20240024 (2024). https://doi.org/10.1515/math-2024-0024.
Review
For citations:
Тemesheva S.M., Кadirbayeva Zh.M., Ashirov S.B. SOLVABILITY OF A MULTIPOINT BOUNDARY VALUE PROBLEM FOR LOADED DIFFERENTIAL EQUATIONS WITH A PARAMETER. Herald of the Kazakh-British Technical University. 2025;22(3):210-220. (In Kazakh) https://doi.org/10.55452/1998-6688-2025-22-3-210-220