КВАНТОВО-УСИЛЕННАЯ БЕЗОПАСНОСТЬ БЛОКЧЕЙНА: ИНТЕГРАЦИЯ КВАНТОВЫХ ВЫЧИСЛЕНИЙ С ОБНАРУЖЕНИЕМ СЕТЕВЫХ АТАК
https://doi.org/10.55452/1998-6688-2025-22-3-123-133
Аннотация
В данной статье описывается система безопасности, которая объединяет технологию блокчейн и квантово-усиленное обнаружение аномалий. Мы предлагаем использовать блокчейн для создания неизменяемой записи событий безопасности, а смарт-контракты – для автоматического реагирования на подтвержденные угрозы. Вариационная квантовая схема (VQC) лежит в основе гибридной квантово-классической модели нашей системы. VQC обрабатывает информацию путем преобразования классических данных в квантовые состояния, использования параметризованных гейтов для моделирования сложных зависимостей и последующего измерения результата для его классификации. Мы используем метод «Один против всех» (OvR) для обнаружения сетевых атак, таких как Botnet, Brute Force и сканирование портов. Мы протестировали ее производительность как в идеальных (бесшумных), так и в симулированных шумных квантовых средах. Точность модели составила 93% в среде без шума и лишь незначительно снизилась до 92% в шумной среде, что демонстрирует ее устойчивость. Мы выявили существенный компромисс: метод OvR эффективен, но требует значительных вычислительных затрат. Это указывает на то, что последующие усилия должны быть сосредоточены на создании более эффективных систем квантовой многоклассовой классификации.
Об авторах
И. СабешулыКазахстан
докторант
г. Алматы
А. Акжалова
Казахстан
профессор, PhD
г. Алматы
Sadok Ben Yahia
Дания
профессор, PhD
г. Сённерборг
Список литературы
1. Anita, N., Vijayalakshmi, M., and Shalinie, S. M. Proof-of-Improved-Participation: A New Consensus Protocol for Blockchain Technology. Computer Systems Science and Engineering, 44(3), 2007–2018 (2023).
2. Bellante, A., Fioravanti, T., Carminati, M., Zanero, S., and Luongo, A. Evaluating the potential of quantum machine learning in cybersecurity: A case-study on PCA-based intrusion detection systems. Computers & Security, 104341 (2025).
3. Du, Y., Wang, X., Guo, N., Yu, Z., Qian, Y., Zhang, K., Hsieh, M.-H., Rebentrost, P., and Tao, D. Quantum Machine Learning: A Hands-on Tutorial for Machine Learning Practitioners and Researchers. arXiv:2502.01146 [quant-ph] (2025).
4. Fitzi, M., Gazî, P., Kiayias, A., Russell, A., and Research, I. Proof-of-Stake Blockchain Protocols with Near-Optimal Throughput (2020).
5. Kim, H., and Kim, D. Adjusting the Block Interval in PoW Consensus by Block Interval Process Improvement. Electronics, 10(17), 2135 (2021).
6. Lao, L., Dai, X., Xiao, B., and Guo, S. G-PBFT: A Location-based and Scalable Consensus Protocol for IoT-Blockchain Applications. In 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 664–673 (2020).
7. Lin, Z. Comparative Analysis of Blockchain Consensus Algorithms. In Proceedings of the 2024 2nd International Conference on Image, Algorithms and Artificial Intelligence (ICIAAI 2024), 115, 264–276 (2024).
8. Li, A., Wei, X., and He, Z. Robust Proof of Stake: A New Consensus Protocol for Sustainable Blockchain Systems. Sustainability, 12(7), 2824 (2020).
9. Li, Y., Xia, C., Li, C., Zhao, Y., Chen, C., and Wang, T. HL-DPoS: An Enhanced Anti-Long-Range Attack DPoS Algorithm. arXiv:2310.15460 [cs] (2023).
10. Narayan, D. G., Arali, N., and Tejas, R. DPoSEB: Delegated Proof of Stake with Exponential Backoff Consensus Algorithm for Ethereum Blockchain. Computer Science Journal of Moldova, 32(2(95)), 262–288 (2024).
11. Naz, M. T., Elmedany, W., and Ali, M. Securing SCADA systems in smart grids with IoT integration: A Self-Defensive Post-Quantum Blockchain Architecture. Internet of Things, 28, 101381 (2024).
12. Neu, J., Sridhar, S., Yang, L., Tse, D., and Alizadeh, M. Longest Chain Consensus Under Bandwidth Constraint. arXiv:2111.12332 [cs] (2022).
13. Pérez-Salinas, A., Cervera-Lierta, A., Gil-Fuster, E., and Latorre, J. I. Data re-uploading for a universal quantum classifier. Quantum, 4, 226 (2020).
14. Qu, Z., Zhang, Z., Liu, B., Tiwari, P., Ning, X., and Muhammad, K. Quantum detectable Byzantine agreement for distributed data trust management in blockchain. Information Sciences, 637, 118909 (2023).
15. Sanda, O., Pavlidis, M., Seraj, S., and Polatidis, N. Long-Range attack detection on permissionless blockchains using Deep Learning. Expert Systems with Applications, 218, 119606 (2023).
16. Sayeed, S., and Marco-Gisbert, H. Assessing Blockchain Consensus and Security Mechanisms against the 51% Attack. Applied Sciences, 9 (9), 1788 (2019).
17. Hazari, S. S., and Mahmoud, Q. H. Improving Transaction Speed and Scalability of Blockchain Systems via Parallel Proof of Work. Future Internet, 12 (8), 125 (2020).
18. Sharma, T., Krishna, C. R., and Bahga, A. A Cost-Efficient Proof-of-Stake-Voting Based Auditable Blockchain e-Voting System. IOP Conference Series: Materials Science and Engineering, 1099 (1), 012038 (2021).
19. Siddiqui, S., Srivastava, V., Maheshwari, R., and Gujar, S. QuickSync: A Quickly Synchronizing PoSBased Blockchain Protocol. arXiv:2005.03564 [cs] (2023).
20. Sun, Y., Yan, B., Yao, Y., and Yu, J. DT-DPoS: A Delegated Proof of Stake Consensus Algorithm with Dynamic Trust. Procedia Computer Science, 187, 371–376 (2021).
21. Tang, S., Wang, Z., Jiang, J., Ge, S., and Tan, G. Improved PBFT algorithm for high-frequency trading scenarios of alliance blockchain. Scientific Reports, 12 (1), 4426 (2022).
22. Upadhyay, S., and Ghosh, S. Quantum Quandaries: Unraveling Encoding Vulnerabilities in Quantum Neural Networks. arXiv:2502.01486 [quant-ph] (2025).
23. Wang, B., Li, Z., and Li, H. Hybrid Consensus Algorithm Based on Modified Proof-of-Probability and DPoS. Future Internet, 12(8), 122 (2020).
24. Wang, Z., Li, J., Liu, A., Ota, K., Dong, M., and Chen, X. RQPoA: A random quantum PoA Consensus Mechanism in Blockchain Based on Quantum Methods (2024).
25. Weng, C.-X., Gao, R.-Q., Bao, Y., Li, B.-H., Liu, W.-B., Xie, Y.-M., Lu, Y.-S., Yin, H.-L., and Chen, Z.-B. Beating the fault-tolerance bound and security loopholes for Byzantine agreement with a quantum solution. Research, 6, 0272 (2023).
26. Wu, Y., Song, P., and Wang, F. Hybrid Consensus Algorithm Optimization: A Mathematical Method Based on POS and PBFT and Its Application in Blockchain. Mathematical Problems in Engineering, 2020, 1–13 (2020).
27. Xiao, J., Luo, T., Li, C., Zhou, J., and Li, Z. CE-PBFT: A high availability consensus algorithm for large-scale consortium blockchain. Journal of King Saud University - Computer and Information Sciences, 36 (2), 101957 (2024).
28. Zhang, Y., Wang, W., and Shi, F. Reputation-based Raft-Poa Layered Consensus Protocol Converging UAV Network (2024).
29. PoW-BC: A PoW Consensus Protocol Based on Block Compression. KSII Transactions on Internet and Information Systems, 15 (4) (2021).
Рецензия
Для цитирования:
Сабешулы И., Акжалова А., Ben Yahia S. КВАНТОВО-УСИЛЕННАЯ БЕЗОПАСНОСТЬ БЛОКЧЕЙНА: ИНТЕГРАЦИЯ КВАНТОВЫХ ВЫЧИСЛЕНИЙ С ОБНАРУЖЕНИЕМ СЕТЕВЫХ АТАК. Вестник Казахстанско-Британского технического университета. 2025;22(3):123-133. https://doi.org/10.55452/1998-6688-2025-22-3-123-133
For citation:
Sabeshuly I., Akzhalova A., Ben Yahia S. QUANTUM-ENHANCED BLOCKCHAIN SECURITY: INTEGRATING QUANTUM COMPUTING WITH NETWORK ATTACK DETECTION. Herald of the Kazakh-British Technical University. 2025;22(3):123-133. https://doi.org/10.55452/1998-6688-2025-22-3-123-133