PHOTOELECTROCHEMICAL HYDROGEN PRODUCTION: FROM BASIC PRINCIPLES TO RECENT ADVANCES (Review article)
https://doi.org/10.55452/1998-6688-2025-22-2-351-366
Abstract
Population growth, economic and industrial development contribute to the growth of human energy consumption. The photoelectrochemical hydrogen production is one of the most environmentally friendly and costeffective technologies that can maintain the balance between the energy produced and consumption. Therefore, the study of materials in this direction and their improvement, increasing efficiency and stability, is an important scientific and technical task. Photoactive semiconductors (PS) absorb solar energy and convert it directly into chemical energy separating hydrogen and oxygen from water molecules. The article discusses the principle and mechanism of the photoelectrolysis process, the main requirements for materials, and the latest innovations in this direction. The water-splitting reaction, main parameters, and concepts are explained. Analyzing the latest results, the efficiency of converting sunlight into hydrogen was compared and analyzed. The main conclusion is that the efficiency of the photoelectrochemical cells depends on the quality, complexity, and configuration of the materials.
About the Authors
A. A. MarkhabayevaKazakhstan
PhD
Almaty
Zh. K. Kalkozova
Kazakhstan
Associate Professor, PhD in Physics and Mathematics
Almaty
Y. S. Mukhametkarimov
Kazakhstan
PhD, Associate Professor
Almaty
A. B. Kozhakhmet
Kazakhstan
Bachelor
Almaty
A. O. Kuanduk
Kazakhstan
Bachelor
Almaty
F. E. Bozheyev
Kazakhstan
PhD, Doctor of Physical and Mathematical Sciences
Almaty
Geesthacht, Germany
References
1. Yang W., et al. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting, Chemical Society Reviews, 48 (19), 4979–5015 (2019). https://doi.org/10.1039/C8CS00997J
2. Markhabayeva A., et al. Effect of synthesis method parameters on the photocatalytic activity of tungsten oxide nanoplates, AIP Advances, 11 (9) (2021). https://doi.org/10.1063/5.0065156.
3. Chen Z., et al. Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols, Journal of Materials Research, 25 (1), 3–16 (2010). https://doi.org/10.1557/JMR.2010.0020.
4. Markhabayeva A., et al. Sintez mikrokubikov Cu2O dlja fotohimicheskogo razlozhenija vody, Vestnik. Serija Fizicheskaja (VKF), 85 (2), 36–41 (2023) [in Russian].
5. Hisatomi T., Kubota J., and K. Domen. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chemical Society Reviews, 43 (22), 7520–7535 (2014). https://doi.org/10.1039/C3CS60378D.
6. Osterloh F.E., and B.A. Parkinson. Recent developments in solar water-splitting photocatalysis, MRS bulletin, 36 (1), 17–22 (2011). https://doi.org/10.1557/mrs.2010.5.
7. Fujishima A., and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, nature, 238 (5358), 37–38 (1972). https://doi.org/ 10.1038/238037a0.
8. Wang S., Liu G., and L. Wang. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting, Chemical reviews, 119 (8), 5192–5247 (2019). https://doi.org/10.1021/acs.chemrev.8b00584.
9. Zhou D., and K. Fan. Recent strategies to enhance the efficiency of hematite photoanodes in photoelectrochemical water splitting, Chinese Journal of Catalysis, 42 (6), 904–919 (2021). https://doi.org/10.1016/S1872-2067(20)63712-3.
10. Forster M., et al. Oxygen deficient α-Fe2O3 photoelectrodes: A balance between enhanced electrical properties and trap-mediated losses, Chemical science, 6 (7), 4009-4016 (2015). https://doi.org/10.1039/C5SC00423C.
11. Sivula K., Le Formal F., and M. Grätzel. Solar water splitting: progress using hematite (α- Fe2O3) photoelectrodes. ChemSusChem, 4 (4), 432–449 (2011). https://doi.org/10.1002/cssc.201000416.
12. Sharma P., Jang J.W., and J.S. Lee. Key strategies to advance the photoelectrochemical water splitting performance of α- Fe2O3 photoanode. ChemCatChem, 11 (1), 157–179, (2019). https://doi.org/10.1002/cctc.201801187.
13. Joy J., Mathew J., and S.C. George. Nanomaterials for photoelectrochemical water splitting–review, International Journal of hydrogen energy, 43 (10), 4804–4817 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.099.
14. Ueno K., Oshikiri T., and H. Misawa. Plasmon- induced water splitting using metallic- nanoparticleloaded photocatalysts and photoelectrodes. ChemPhysChem, 17 (2), 199–215 (2016). https://doi.org/10.1002/cphc.201500761.
15. Gellé A., and A. Moores. Water splitting catalyzed by titanium dioxide decorated with plasmonic nanoparticles, Pure and Applied Chemistry, 89 (12), 1817–1827 (2017). http://dx.doi.org/10.1515/pac-2017-0711.
16. Kim J.H., et al. Overall photoelectrochemical water splitting using tandem cell under simulated sunlight, ChemSusChem, 9 (1), 61–66 (2016). https://doi.org/10.1002/cssc.201501401.
17. Miller E.L., DeAngelis A., and S. Mallory. Multijunction approaches to photoelectrochemical water splitting, in Photoelectrochemical Hydrogen Production., Springer, 205–273 (2011). http://dx.doi.org/10.1007/978-1-4614-1380-6_7.
18. Lin Y., et al. Semiconductor nanostructure-based photoelectrochemical water splitting: A brief review. Chemical Physics Letters, 507 (4–6), 209–215 (2011). https://doi.org/10.1016/j.cplett.2011.03.074.
19. Ager J.W., et al. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting, Energy & Environmental Science, 8 (10), 2811–2824 (2015). https://doi.org/10.1039/C5EE00457H.
20. Kim J.H., et al. Toward practical solar hydrogen production–an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews, 48 (7), 1908–1971 (2019). https://doi.org/10.1039/C8CS00699G.
21. Sayama K., and Y. Miseki. Research and development of solar hydrogen production–Toward the realization of ingenious photocatalysis-electrolysis hybrid system, Synthesiology English edition, 7 (2), 79–91 (2014).
22. Jia J., et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%, Nature communications, 7 (1), 13237 (2016).
23. Cheng W.-H., et al. Monolithic photoelectrochemical device for direct water splitting with 19% efficiency, ACS Energy Letters, 3 (8), 1795–1800 (2018). https://doi.org/10.1021/acsenergylett.8b00920.
24. Romano V., et al. Current density in solar fuel technologies, Energy & Environmental Science, 14 (11), 5760–5787 (2021). https://doi.org/10.1039/D1EE02512K.
25. Bozheyev F., and K. Ellmer. Thin film transition metal dichalcogenide photoelectrodes for solar hydrogen evolution: a review, Journal of Materials Chemistry A., 10 (17), 9327–9347 (2022). https://doi.org/10.1039/D2TA01108E.
26. Kim J.S., et al. In2O3: Sn/TiO2/CdS heterojunction nanowire array photoanode in photoelectrochemical cells, International journal of hydrogen energy, 39 (30), 17473–17480 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.087.
27. Sharma D., et al. Nanostructured SrTiO3 thin films sensitized by Cu2O for photoelectrochemical hydrogen generation, International journal of hydrogen energy, 39 (9), 4189–4197 (2014). http://dx.doi.org/10.1016/j.ijhydene.2013.12.201.
28. Chou J.-C., et al. Photoexcitation of TiO2 photoanode in water splitting. Materials Chemistry and Physics, 143 (3), 1417–1422 (2014). https://doi.org/10.1016/j.matchemphys.2013.11.056.
29. Huang Q., et al., Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis, Journal of Materials Chemistry A, 1 (7), 2418–2425 (2013). https://doi.org/10.1039/C2TA00918H.
30. Cheng C., Ren W., and H. Zhang. 3D TiO2/SnO2 hierarchically branched nanowires on transparent FTO substrate as photoanode for efficient water splitting, Nano Energy, 5, 132–138 (2014). https://doi.org/10.1016/j.nanoen.2014.03.002.
31. Xie S., et al. Gold nanoparticles inducing surface disorders of titanium dioxide photoanode for efficient water splitting, Nano Energy, 10, 313–321 (2014). https://doi.org/10.1016/j.nanoen.2014.09.029.
32. Zhang C., et al. Ultrathin hematite films deposited layer-by-layer on a TiO2 underlayer for efficient water splitting under visible light, International journal of hydrogen energy, 39 (27), 14604–14612 (2014). https://doi.org/10.1016/j.ijhydene.2014.07.120.
33. Sánchez-Tovar R., et al. Enhancement of photoelectrochemical activity for water splitting by controlling hydrodynamic conditions on titanium anodization, Journal of Power Sources, 286, 224–231 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.174.
34. Reichert R., Jusys Z., and R.J.r. Behm. Au/TiO2 photo (electro) catalysis: the role of the Au cocatalyst in photoelectrochemical water splitting and photocatalytic H2 evolution, The Journal of Physical Chemistry C, 119 (44), 24750–24759 (2015). http://dx.doi.org/10.1021/acs.jpcc.5b08428.
35. Liu T., et al. Titania-on-gold nanoarchitectures for visible-light-driven hydrogen evolution from water splitting. Journal of Materials Science, 51, 6987–6997 (2016). https://link.springer.com/article/10.1007/s10853-016-9987-3.
36. Zhang H., and C. Cheng. Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance, ACS Energy Letters, 2 (4), 813–821 (2017). https://doi.org/10.1002/smll.201800395.
37. Ahmad Y.H., et al. Tailoring the deposition of MoSe2 on TiO2 nanorods arrays via radiofrequency magnetron sputtering for enhanced photoelectrochemical water splitting, Applied Surface Science, 626, 157205 (2023). https://doi.org/10.1016/j.apsusc.2023.157205.
38. Mohamed S.K., et al. Optimizing the performance of Au y/Ni x/TiO2 NTs photoanodes for photoelectrochemical water splitting, RSC advances, 13 (20), 14018–14032 (2023). https://doi.org/10.1039/D3RA02011H.
39. Ali R.B., et al. A synergic effect of Bi-metallic layered hydro-oxide cocatalyst on 1-D TiO2 driven photoelectrochemical water splitting. Journal of Asian Ceramic Societies, 11 (3), 424–435 (2023). http://dx.doi.org/10.1080/21870764.2023.2237358.
40. Puerres J., et al. Reduced TiO2 nanorods decorated with carbon nanodots for photoelectrochemical water oxidation. ACS Applied Nano Materials, 6 (15), 14029–14039 (2023). https://doi.org/10.1021/acsanm.3c01903.
41. Thirumalaisamy L., et al. Dual shield: bifurcated coating analysis of multilayered WO3/BiVO4/TiO2/NiOOH photoanodes for sustainable solar-to-hydrogen generation from challenging waters. ACS sustainable chemistry & engineering, 12 (8), 3044–3060 (2024). https://doi.org/10.1021/acssuschemeng.3c06528.
42. Bae S., et al. Hole-Selective Hybrid TiO2 Layer towards Long-Term Stability of Low-Cost Photoanodes in Solar Water Oxidation (2024). https://doi.org/10.1038/s41467-024-53754-9.
43. Sitaaraman S., et al. Photoelectrochemical performance of a nanostructured BiVO4/NiOOH/FeOOH–Cu2O/CuO/TiO2 tandem cell for unassisted solar water splitting. Nanoscale Advances, 6 (9), 2407–2418 (2024). https://doi.org/10.1039/D4NA00088A.
44. Abdul Hamid S.B., Teh S.J., and C.W. Lai. Photocatalytic water oxidation on ZnO: a review, Catalysts, 7 (3), 93 (2017). https://doi.org/10.3390/catal7030093.
45. Liu C.-F., Lu Y.-J., and C.-C. Hu. Effects of anions and pH on the stability of ZnO nanorods for photoelectrochemical water splitting, ACS omega, 3 (3), 3429–3439 (2018). https://doi.org/10.1021/acsomega.8b00214.
46. Ning X., and G. Lu. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting, Nanoscale, 12 (3), 1213–1223 (2020). https://doi.org/10.1039/C9NR09183A.
47. Ros C., Andreu T., and J.R. Morante. Photoelectrochemical water splitting: a road from stable metal oxides to protected thin film solar cells, Journal of Materials Chemistry A, 8 (21), 10625–10669 (2020). https://doi.org/10.1039/D0TA02755C.
48. Bae D., et al. Strategies for stable water splitting via protected photoelectrodes. Chemical Society Reviews, 46 (7), 1933–1954 (2017). https://doi.org/10.1039/C6CS00918B.
Review
For citations:
Markhabayeva A.A., Kalkozova Zh.K., Mukhametkarimov Y.S., Kozhakhmet A.B., Kuanduk A.O., Bozheyev F.E. PHOTOELECTROCHEMICAL HYDROGEN PRODUCTION: FROM BASIC PRINCIPLES TO RECENT ADVANCES (Review article). Herald of the Kazakh-British Technical University. 2025;22(2):351-366. (In Kazakh) https://doi.org/10.55452/1998-6688-2025-22-2-351-366