NUMERICAL SOLUTION OF A FRACTIONAL CONVECTION-DIFFUSION EQUATION FOR AIR POLLUTION PREDICTION
https://doi.org/10.55452/1998-6688-2025-22-2-279-289
Abstract
This paper presents a numerical method for solving the convection-diffusion equation with a fractional-order Caputo derivative to model air pollution in urban environments. The developed finite element scheme accounts for memory effects, offering a more accurate representation of pollutant transport compared to classical models. Stability and convergence of the method are theoretically proven and supported by numerical experiments. The model effectively identifies pollutant accumulation zones and can forecast air quality under various weather conditions. The results have practical value for improving environmental monitoring systems and planning measures to reduce pollution levels.
About the Authors
A. K. BakishevKazakhstan
PhD student
Ust-Kamenogorsk
M. N. Madiyarov
Kazakhstan
Cand. Tech. Sci., Associate Professor
Ust-Kamenogorsk
N. B. Alimbekova
Kazakhstan
PhD, Associate Professor
Ust-Kamenogorsk
D. R. Baigereyev
Kazakhstan
PhD, Associate Professor
Ust-Kamenogorsk
Z. D. Baishemirov
Kazakhstan
PhD, Associate Professor
Almaty
References
1. Manisalidis I., Stavropoulou E., Stavropoulos A. and Bezirtzoglou E. Environmental and Health Impacts of Air Pollution: A Review // Frontiers in Public Health. – 2020. – Vol. 8. http://dx.doi.org/10.3389/fpubh.2020.00014
2. Piracha A., Chaudhary M.T. Urban Air Pollution, Urban Heat Island and Human Health: A Review of the Literature // Sustainability. – 2022. – Vol. 14. – No. 15. – P. 9234. http://dx.doi.org/10.3390/su14159234.
3. Zhang X., Han L., Wei H. and et al. Linking urbanization and air quality together: A review and a perspective on the future sustainable urban development // Journal of Cleaner Production. – 2022. – Vol. 346. – P. 130988. http://dx.doi.org/10.1016/j.jclepro.2022.130988.
4. Abbaszadeh M., Azis M.I., Dehghan M. and Mohammadi-Arani R. Reduced order model for simulation of air pollution model and application in 2D urban street canyons via the meshfree gradient smoothing method // Computers & Mathematics with Applications. – 2023. – Vol. 140. – P. 195–210. http://dx.doi.org/10.1016/j.camwa.2023.03.009.
5. Leelőssy Á., Molnár F., Izsák F. and et al. Dispersion modeling of air pollutants in the atmosphere: a review // Open Geosciences. – 2014. – Vol. 6. – No. 3. http://dx.doi.org/10.2478/s13533-012-0188-6.
6. Dong G., Guo Z. and Yao W. Numerical methods for time-fractional convection-diffusion problems with high-order accuracy // Open Mathematics. – 2021. –Vol. 19. – No. 1. – P. 782–802 http://dx.doi.org/10.1515/math-2021-0036.
7. Alimbekova N.B. and Oskorbin N. M. Study of the initial boundary value problem for a two-dimensional convection-diffusion equation with a fractional time derivative in the sense of Caputo-Fabrizio // Journal of Mathematics, Mechanics and Computer Science. – 2021. – Vol. 110. – No. 2. http://dx.doi.org/10.26577/JMMCS.2021.v110.i2.10.
8. Kamran, Kamal R., Rahmat G. and Shah K. On the Numerical Approximation of Three-Dimensional Time Fractional Convection-Diffusion Equations // Mathematical Problems in Engineering. – 2021. – P. 1–16. http://dx.doi.org/10.1155/2021/4640467.
9. Aniley W.T. and Duressa G.F. Uniformly convergent numerical method for time-fractional convection–diffusion equation with variable coefficients // Partial Differential Equations in Applied Mathematics. – 2023. – Vol. 8. – P. 100592. http://dx.doi.org/10.1016/j.padiff.2023.100592.
10. Jung C.Y. Numerical approximation of convection–diffusion equations in a channel using boundary layer elements // Applied Numerical Mathematics. – 2006. – Vol. 56. – No. 6. – P. 756–777. http://dx.doi.org/10.1016/j.apnum.2005.06.005.
11. Liu F., Anh V. and Turner I. Numerical solution of the space fractional Fokker–Planck equation // Journal of Computational and Applied Mathematics. – 2004. – Vol. 166. – No. 1. – P. 209–219. http://dx.doi.org/10.1016/j.cam.2003.09.028.
12. Chabokpour J. Integrative multi-model analysis of river pollutant transport: advancing predictive capabilities through transient storage dynamics and fractional calculus approaches // Acta Geophysica. – 2024. – Vol. 73. – P. 2835–2849. http://dx.doi.org/10.1007/s11600-024-01496-z.
13. Barrios-Sánchez J.M., Baeza-Serrato R. and Martínez-Jiménez L. Fractional Calculus to Analyze Efficiency Behavior in a Balancing Loop in a System Dynamics Environment // Fractal and Fractional. – 2024. – Vol. 8. – No. 4. – P. 212. http://dx.doi.org/10.3390/fractalfract8040212.
14. Esmaeili S., Shamsi M. and Luchko Yury. Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials // Computers & Mathematics with Applications. – Vol. 62. – No. 3. – P. 918–929. http://dx.doi.org/10.1016/j.camwa.2011.04.023.
15. Daraghmeh A., Qatanani N. and Saadeh A. Numerical Solution of Fractional Differential Equations // Applied Mathematics. 2020. – Vol. 11. – No. 11. – P. 1100–1115. http://dx.doi.org/10.4236/am.2020.1111074.
16. Alsidrani F., Kılıçman A. and Senu N. On the Modified Numerical Methods for Partial Differential Equations Involving Fractional Derivatives // Axioms. – 2023. – Vol. 12. – No. 9. – P. 901. http://dx.doi.org/10.3390/axioms12090901.
17. Alimbekova N., Berdyshev A., Madiyarov M. and Yergaliyev Y. Mathematics. – 2024. – Vol. 12. – No. 16. – 2519. http://dx.doi.org/10.3390/math12162519.
18. Baigereyev D., Alimbekova N., Berdyshev A. and Madiyarov M. Convergence Analysis of a Numerical Method for a Fractional Model of Fluid Flow in Fractured Porous Media // Mathematics. – 2021. – Vol. 9. – No. 18. – P. 2179. http://dx.doi.org/10.3390/math9182179.
19. Zhang W., Capilnasiu A., Sommer G. and et al. An efficient and accurate method for modeling nonlinear fractional viscoelastic biomaterials // Computer Methods in Applied Mechanics and Engineering. – 2020. – Vol. 362. – P. 112834. http://dx.doi.org/10.1016/j.cma.2020.112834.
20. Zhang Y., Sun Z. and Liao H. Finite difference methods for the time fractional diffusion equation on non-uniform meshes // Journal of Computational Physics. – 2014. – Vol. 265. – P. 195–210. http://dx.doi.org/10.1016/j.jcp.2014.02.008
Review
For citations:
Bakishev A.K., Madiyarov M.N., Alimbekova N.B., Baigereyev D.R., Baishemirov Z.D. NUMERICAL SOLUTION OF A FRACTIONAL CONVECTION-DIFFUSION EQUATION FOR AIR POLLUTION PREDICTION. Herald of the Kazakh-British Technical University. 2025;22(2):279-289. https://doi.org/10.55452/1998-6688-2025-22-2-279-289