ANISOTROPIC GRAND LORENTZ SPACES AND THEIR PROPERTIES
https://doi.org/10.55452/1998-6688-2025-22-2-207-219
Abstract
In this article, new anisotropic grand Lorentz spaces are defined and their propertөies are studied. These spaces are a new structure that provides a unified parameter for the study of various functional spaces. The consideration of grand spaces is especially important for the study of boundary conditions of parameters and allows us to achieve new results in this area. The study of boundary parameters in classical spaces is not always possible. In recent years, grand Lebesgue spaces and their generalizations have been widely studied in problems of functional spaces. These spaces are generalizations of classical Lorentz and grand Lorentz spaces. The article defines grand anisotropic Lorentz spaces, gives basic estimates in these spaces, proves embedding theorems, and derives embedding theorems for parameters. The results obtained can play an important role not only in theoretical, but also in applied problems.
About the Authors
M. ManarbekKazakhstan
PhD Student
Almaty
Astana
N. T. Tleukhanova
Kazakhstan
Professor, Doctor of Phys.-Math. Sc.
Astana
G. K. Mussabayeva
Russian Federation
PhD
Astana
References
1. Iwaniec T. and Sbordone C. On the integrability of the Jacobian under minimal hy-potheses. Archive for Rational Mechanics and Analysis, 119 (2), 129–143 (1992).
2. Fiorenza A. and Karadzhov G.E. Grand and Small Lebesgue Spaces and Their Analogs. Zeitschrift fur Analysis und ihre Anwendungen, 23 (4), 657–681 (Dec. 2004).
3. Fiorenza A., Formica M.R., Gogatishvili A., Kopaliani T., and Rakotoson J.M. Characterization of interpolation between Grand, small or classical Lebesgue spaces. Non linear Analysis, 177, 422–453 (Dec.2018).
4. Fiorenza A. Duality and reflexivity in grand Lebesgue spaces. Collectanea Mathematica, 51 (2), 131–148 (2000).
5. Iwaniec T. and Sbordone C. Weak minima of variational integrals. J. Reine Angew. Math., 454, 143–161 (1994).
6. Iwaniec T. and Sbordone C. Riesz transforms and elliptic PDEs with VMO coeffi- cients. J. Anal. Math., 74, 183–212 (1998).
7. Sbordone C. Grand Sobolev spaces and their applications to variational problems. Matematiche (Catania), 51.2 (1996), 335–347 (1997).
8. Kokilashvili V., Meskhi A., Rafeiro H., and Samko S. Integral Operators in Non- Standard Function Spaces, vol. II. Variable Exponent H ̈older, Morrey-Campanato and Grand Spaces (Birkhauser, Basel, 2016).
9. Kokilashvili V., Meskhi A., Rafeiro H., and Samko S. Integral Operators in Non-Standard Function Spaces, vol. III. Advances in Grand Function Spaces (Birkhauser, Basel, 2024).
10. Lorentz G. Some new functional spaces. Annals of Mathematics, 51, 37–55 (1950).
11. Stein E.M. Interpolation of linear operators. Transactions of the American Mathematical Society, 83, 482–492 (1956).
12. Bennett C. and Sharpley R.C. Interpolation of Operators, Elsevier Science (1988).
13. Castillo R.E. and Chaparro H.C. Classical and Multidimensional Lorentz Spaces, De Gruyter (2021).
14. Nursultanov E.D. O mul'tiplikatorakh ryadov Fur'e po trigonometricheskoi sisteme. Matematicheskie zametki, 63 (2), 235–247 (1998). [in Russian]
15. Nursultanov E.D. O koeffitsientakh kratnykh ryadov Fur'e. Izvestiya RAN. Seriya matematicheskaya, 64 (1), 117–121 (2000). [in Russian]
16. Nursultanov E.D. O primenenii interpolyatsionnykh metodov k issledovaniyu svoistv funktsii mnogikh peremennykh. Matematicheskie zametki, 3 (75), 372–383 (2004). [in Russian]
17. Nursultanov E.D., Suragan D. On the convolution operator in Morrey spaces. J. Math. Anal. Appl., 515, 126357 (2022).
18. Musabayeva G.K. Bochkarev-type inequality. Bulletin of the al-Farabi Kazakh National University. Series: Mathematics, Mechanics, and Computer Science, 3(82), 12–18 (2014). [in Russian]
19. Musabayeva G.K. Summability of Fourier coefficients from anisotropic Lorentz spaces // Mathematical Journal, 14, 4(54), 84–96 (2014). [in Russian]
20. Nursultanov E.D., Rafeiro H., Suragan D. Convolution-type operators in grand Lorentz spaces, Analysis and Mathematical Physics (2025).
Review
For citations:
Manarbek M., Tleukhanova N.T., Mussabayeva G.K. ANISOTROPIC GRAND LORENTZ SPACES AND THEIR PROPERTIES. Herald of the Kazakh-British Technical University. 2025;22(2):207-219. (In Kazakh) https://doi.org/10.55452/1998-6688-2025-22-2-207-219