Preview

Herald of the Kazakh-British technical university

Advanced search

STUDY OF DOUBLE-LAYER ANTIREFLECTION COATING BASED ON SIC BY «LUMERICAL FTDT» SIMULATIONS

Abstract

In this paper, using the “lumerical FTDT” software, simulations have been carried out to determine the optimal layer thicknesses in antireflection SiC/MgF2 coatings deposited on polished silicon. The double layer structure SiC(60 nm) + MgF2(110 nm) showed the lowest reflection (<0.5%) in the wavelength range from 500 to 800 nm. However, an analysis of the light absorption and short-circuit current density of a silicon solar cell shows that among the considered antireflection SiC/MgF2 coatings, the most effective is the double layer structure SiC(50 nm) + MgF2(110 nm). This is due to the low reflection in the region of 317-485 nm and the increase of the solar cell current density up to 179.0 A/m2.

About the Authors

A. Sultanov
Казахстанско-Британский технический университет
Kazakhstan


K. Nussupov
Казахстанско-Британский технический университет
Kazakhstan


N. Beisenkhanov
Казахстанско-Британский технический университет
Kazakhstan


References

1. H.K. Raut, V.A. Ganesh, A.S. Nair, S. Ramakrishna. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 4:10 (2011) 3779-3804.

2. H.R. Philipp and H. Ehrenreich. Optical properties of semiconductors. Phys. Rev. 129 (1963) 1550-1560.

3. J. Strong. On a Method of Decreasing the Reflection from Nonmetallic Substances. s.l.: California Istutute of Technology, 1936.

4. L. Rayleigh. On Reflection of Vibrations at the Confines of two Media between which the Transition is Gradual. Proceedings of the London Mathematical Society. s1-11(1) (1879) 51–56.

5. M. Cid, N. Stem, C. Brunetti, A.F. Beloto and C.A.S. Ramos. Improvements in anti-reflection coatings for high efficiency silicon solar cells. Surface and Coatings Technology. 106(2-3) (1998) 117-120.

6. S. Kermadia, N. Agoudjilb, S. Sali, R. Tala-Ighil, M. Boumaour. Sol-gel Synthesis of SiO2-TiO2 film as antireflection coating on silicon. Materials Science Forum. 206 (2009) 221-224.

7. J. Zhao and A.G Martin. Optimized Antireflection Coatings for High-Efficiency Silicon Solar Cells. IEEE Transactions on Electron Device. 38(8) (1991) 1925–1934.

8. Y.-H. Joung, H. Kang, J. Kim, H.-S. Lee, J. Lee and W. Choi. SiC formation for a solar cell passivation layer using an RF magnetron co-sputtering system. Nanoscale Research Letters. 7(1) (2012) 22.

9. K.Kh. Nussupov, N.B. Beisenkhanov, D.I. Bakranova, S. Keiinbay, A.A. Turakhun and A.A. Sultan. Low-temperature synthesis of α-SiC nanocrystals. Physics of the Solid State. 61(12) (2019) 2473-2479.

10. I. Martı́n, M. Vetter, A. Orpella, J. Puigdollers, A. Cuevas, and R. Alcubilla. Surface passivation of p-type crystalline Si by plasma enhanced chemical vapor deposited amorphous SiCx:H films. Applied Physics Letters. 79(14) (2001) 2199–2201.

11. FTDT. https://www.lumerical.com/products/fdtd/. [Online]

12. P. T. B. Shaffer. Refractive Index, Dispersion, and Birefringence of Silicon Carbide Polytypes. Applied Optics 10(5) (1971) 1034.

13. L.V. Rodríguez-de Marcos, J.I. Larruquert, J.A. Méndez and J.A. Aznárez. Self-consistent o


Review

For citations:


Sultanov A., Nussupov K., Beisenkhanov N. STUDY OF DOUBLE-LAYER ANTIREFLECTION COATING BASED ON SIC BY «LUMERICAL FTDT» SIMULATIONS. Herald of the Kazakh-British technical university. 2020;17(3):102-106. (In Russ.)

Views: 309


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)