Preview

Herald of the Kazakh-British Technical University

Advanced search

ON SOLUTIONS OF NONHOMOGENEOUS SYSTEMS OF SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS

https://doi.org/10.55452/1998-6688-2025-22-2-188-199

Abstract

The aim of this work is to study a nonhomogeneous system of second-order partial differential equations that is close to the ordinary case. A particular solution of the considered system near the regular singular point (0,0) is sought in the form of a generalized power series in two variables using the Frobenius-Latysheva method. Various possible cases are demonstrated, where the systems of determining equations have simple or multiple roots. A theorem is presented for the particular solution of a “resonant” nonhomogeneous system of second-order partial differential equations. As an example, the solution of a nonhomogeneous Bessel system is given. The corresponding homogeneous system has solutions in the form of Bessel functions of two variables, while the particular solution of the nonhomogeneous system is expressed as a product of Bessel functions.

About the Authors

M. Zh. Talipova
Aktobe Regional University named after K. Zhubanov
Kazakhstan

 Candidate of Physical and Mathematical Sciences, Associate Professor 



R. D. Seilova
Aktobe Regional University named after K. Zhubanov
Kazakhstan

 Candidate of Physical and Mathematical Sciences, Associate Professor 



A. D. Kaipova
Aktobe Regional University named after K. Zhubanov
Russian Federation

 master of Science, teacher 



References

1. Fuchs L. Ueber Relationen welche für die zwischen je zwei singulären Punkten erstreckten Integrale der Lösungen linearer Differentialgleichungen stattfinden. Journal für die reine und angewandte Mathematik, Bd. 76, pp. 177–213 (1873).

2. Fuchs L. Ueber die Werte, welche die Integrale einer Differentialgleichungen erster Ordnung in singularen Punkten annehmen kannen. Berl. Ber., pp. 219–300 (1886).

3. Frobenius G. Uber algebreich integrirbare lineare Differentialgleichungen. Journal für die reine und angewandte Mathematik, Bd. 80, pp. 83–193 (1875).

4. Latisheva K.Ja. Pidnormal'ni rjadi, jak razv"jazki linijnih diferencial'nih rivnjan', rang jakih dorivnju odinici.DAN USSR, no. 2, pp. 53–57 (1952). [in Ukrainian]

5. Latysheva K.Ja. O normal'nyh rjadah kak reshenijah linejnyh differencial'nyh uravnenij ljubogo ranga. Naukovi zapiski KDU, Mat. sbornik., no. 6, pp. 25–46 (1952). [in Russian]

6. Puankare A. Izbrannye metody. Novye metody nebesnoj mehaniki (Moscow, Nauka, 1971), 771 p. [in Russian].

7. Sikorskij Ju.I., Tereshhenko N.I. O neodnorodnyh linejnyh differencial'nyh uravnenijah v reguljarnom sluchae. Mat. fizika (Kiev, 1972), no.11, pp. 133–137 [in Russian].

8. Sikorskij Ju.I., Tereshhenko N.I. Ob odnom metode nahozhdenija chastnyh reshenij neodnorodnyh uravnenij Besselja i Lezhandra. Mat. Fizika (Kiev. 1971), vol. 9, pp.152–159. [in Russian].

9. Sikorskij Ju.I. Normal'nye reshenija linejnyh neodnorodnyh differencial'nyh uravnenij s peremennymi kojefficientami: avtoref. … kand. fiz.-mat. Nauk (Kiev, 1972), 12 p. [in Russian].

10. Kashkinbaev O. Normal'no-reguljarnye i asimptoticheskie reshenija linejnyh differencial'nyh uravnenij s trigonometricheskimi kojefficientami: avtoref. … kand. fiz.-mat. Nauk (Almaty, 1996), 16 p. [in Russian].

11. Latysheva K.Ja., Tereshhenko N.I., Orel G.S. Normal'no-reguljarnye reshenija i ih prilozhenija (Kiev: Vishh. shkola, 1974), 136 p. [in Russian].

12. Tasmambetov Zh.N., Tereshhenko N.I. O logarifmicheskih reshenijah sistemy differencial'nyh uravnenij v chastnyh proizvodnyh vtorogo porjadka. Sbornik trudov inst. mat. i meh. AN KazSSR, pp. 236 – 244 (1974) [in Russian].

13. Tasmambetov Zh.N. Postroenie normal'nyh i normal'no-reguljarnyh reshenij special'nyh system differencial'nyh uravnenij v chastnyh proizvodnyh vtorogo porjadka. IP Zhandildaeva S.T. (Aktobe, 2015), 464 р. [in Russian].

14. Tasmambetov Zh.N. Normal'no-reguljarnye reshenija sistemy differencial'nyh uravnenij v chastnyh proizvodnyh vtorogo porjadka. Izv. Min. naukiAN RK. Ser. fiz.-mat., no. 5, pp. 51–57 (1998) [in Russian].

15. Talipova M.Zh., Tasmambetov Zh.N. Algoritm poiska racional'nyh reshenij linejnyh differencial'nyh uravnenij s polinomial'nymi kojefficientami. Materialy II mezhd. konf. “Problemy differencial'nyh uravnenij, analiza i algebry” (Aktobe, 2000), pp.108–110 [in Russian].

16. Tasmambetov Zh. About logarithmic decisions of the special system of the differential equations in partial derivatives. Abstracts of the third congress of the World mathematical Society of Turkic countries. Almaty, 407–411(2009).

17. Tasmambetov Zh.N., Issenova A.A. Bessel functions of two variables as solutions for systems of the second order differential equations. Bulletin of the Karaganda University. Mathematics Series 98, 2, 141–152 (2020).

18. Issenova A.A., Tasmambetov Z.N, Talipova M.Z. Construction of solutions hypergeometric system of Horn type in the form of Laguerre polynomials. Lobachevskii Journal of Mathematics 43, 11, 3167–3173 (2022).

19. Tasmambetov Z.N., Talipova M.Z. Construction of normal-regular decisions of Bessel typed special system. AIP Conference Proceedings, 1880 (2017) https://doi.org/10.1063/1.5000629.

20. Bejtmen G. i Jerdeji A. Vysshie transcendentnye funkcii. ch. II. Funkcii Besselja, funkcii parabolicheskogo cilindra, ortogonal'nye mnogochleny (Moscow, Nauka, 1974), 295 p. [in Russian].

21. Korenev B.G. Vvedenie v teoriju besselevyh funkcij (M., Nauka, 1971), 288 p. [in Russian].


Review

For citations:


Talipova M.Zh., Seilova R.D., Kaipova A.D. ON SOLUTIONS OF NONHOMOGENEOUS SYSTEMS OF SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS. Herald of the Kazakh-British Technical University. 2025;22(2):188-199. (In Russ.) https://doi.org/10.55452/1998-6688-2025-22-2-188-199

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)