ADAPTATION OF TEXT GENERATION STYLE TO A SPECIFIC AUDIENCE OR CONTENT
https://doi.org/10.55452/1998-6688-2025-22-2-141-154
Abstract
Adaptation of text generation style to specific audiences or content can be achieved without costly fine-tuning. We freeze model weights and instead (i) search eight decoder hyperparameters with Bayesian optimization and (ii) prepend a one-line style cue that modulates readability. Experiments on five mathematical question-answering benchmarks (AQUA-RAT, MathQA, GSM8K, MAWPS, SVAMP) with three 8–14 B-parameter checkpoints (LLaMA-3.1-8B, DeepSeek-Qwen-8B/14B) show that 50-trial Optuna searches raise exact-match accuracy by up to 36 percentage points and close 5–10 points of the gap to 30–70 B fine-tuned baselines. The same settings transfer across tasks with under 2-point loss. Adding the child-friendly header leaves accuracy virtually unchanged while halving the Flesch–Kincaid grade level and shortening reasoning traces. All experiments fit within a few GPU-hours on a single A100, making the method practical for resource-constrained deployments. The study demonstrates that careful decoder control combined with micro-prompts delivers numerical correctness and audience-appropriate exposition without additional training or tuning time.
Keywords
About the Authors
Zh. ZhangbyrbayKazakhstan
Master’s student
Almaty
I. Akhmetov
Kazakhstan
PhD, professor
Almaty
A. Pak
Kazakhstan
PhD, professor
Almaty
A. Jaxylykova
Kazakhstan
PhD student
Almaty
P. Komada
Poland
PhD, professor
Lublin
References
1. Brown T. et al. Language models are few-shot learners // Advances in neural information processing systems. – 2020. – Vol. 33. – P. 1877–1901.
2. Wei J. et al. Chain-of-thought prompting elicits reasoning in large language models // Advances in neural information processing systems. – 2022. – Vol. 35. – P. 24824–24837.
3. Kojima T. et al. Large language models are zero-shot reasoners // Advances in neural information processing systems. – 2022. – Vol. 35. – P. 22199–22213.
4. Touvron H. et al. Llama: Open and efficient foundation language models //arXiv preprint arXiv:2302.13971. – 2023.
5. Holtzman A. et al. The curious case of neural text degeneration // arXiv preprint arXiv:1904.09751. – 2019.
6. Wu Y. et al. Google’s neural machine translation system: Bridging the gap between human and machine translation // arXiv preprint arXiv:1609.08144. – 2016.
7. Ippolito D. et al. Comparison of diverse decoding methods from conditional language models // arXiv preprint arXiv:1906.06362. – 2019.
8. Bergstra J., Bengio Y. Random search for hyper-parameter optimization // The journal of machine learning research. – 2012. – Vol. 13. – No. 1. – P. 281–305.
9. Snoek J., Larochelle H., Adams R.P. Practical bayesian optimization of machine learning algorithms // Advances in neural information processing systems. – 2012. – Vol. 25.
10. Hutter F., Hoos H. H., Leyton-Brown K. Sequential model-based optimization for general algorithm configuration // Learning and intelligent optimization: 5th international conference, LION 5, Rome, Italy, January 17–21, 2011. selected papers 5. – Springer Berlin Heidelberg, 2011. – P. 507–523.
11. Akiba T. et al. Optuna: A next-generation hyperparameter optimization framework // Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. – 2019. – P. 2623–2631.
12. Falkner S., Klein A., Hutter F. BOHB: Robust and efficient hyperparameter optimization at scale // International conference on machine learning. – PMLR, 2018. – P. 1437–1446.
13. Wang X. et al. H. Chi, Sharan Narang, Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models //The Eleventh International Conference on Learning Representations. – 2023. – Vol. 1.
14. Amini A. et al. Mathqa: Towards interpretable math word problem solving with operation-based formalisms // arXiv preprint arXiv:1905.13319. – 2019.
15. Patel A., Bhattamishra S., Goyal N. Are NLP models really able to solve simple math word problems? //arXiv preprint arXiv:2103.07191. – 2021.
16. Ling W. et al. Program induction by rationale generation: Learning to solve and explain algebraic word problems //arXiv preprint arXiv:1705.04146. – 2017.
17. Cobbe K. et al. Training verifiers to solve math word problems //arXiv preprint arXiv:2110.14168. – 2021.
18. Koncel-Kedziorski R. et al. MAWPS: A math word problem repository //Proceedings of the 2016 conference of the north american chapter of the association for computational linguistics: human language technologies. – 2016. – P. 1152–1157.
19. Gao L. et al. Pal: Program-aided language models // International Conference on Machine Learning. – PMLR, 2023. – P. 10764–10799.
20. Lewkowycz A. et al. Solving quantitative reasoning problems with language models //Advances in Neural Information Processing Systems. – 2022. – Vol. 35. – P. 3843–3857.
21. Hendrycks D. et al. Measuring mathematical problem solving with the math dataset // arXiv preprint arXiv:2103.03874. – 2021.
22. Feurer M., Hutter F. Hyperparameter optimization. – Springer International Publishing, 2019. – P. 3–33.
23. Bergstra J., Yamins D., Cox D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures // International conference on machine learning. – PMLR, 2013. – P. 115–123.
24. Li L. et al. Hyperband: A novel bandit-based approach to hyperparameter optimization // Journal of Machine Learning Research. – 2018. – Vol. 18. – No. 185. – P. 1–52.
25. Fan A., Lewis M., Dauphin Y. Hierarchical neural story generation // arXiv preprint arXiv:1805.04833. – 2018.
26. Keskar N. S. et al. Ctrl: A conditional transformer language model for controllable generation //arXiv preprint arXiv:1909.05858. – 2019.
27. Pillutla K. et al. Mauve: Measuring the gap between neural text and human text using divergence frontiers // Advances in Neural Information Processing Systems. – 2021. – Vol. 34. – P. 4816–4828.
28. Shi C. et al. A thorough examination of decoding methods in the era of llms // arXiv preprint arXiv:2402.06925. – 2024.
Review
For citations:
Zhangbyrbay Zh., Akhmetov I., Pak A., Jaxylykova A., Komada P. ADAPTATION OF TEXT GENERATION STYLE TO A SPECIFIC AUDIENCE OR CONTENT. Herald of the Kazakh-British Technical University. 2025;22(2):141-154. https://doi.org/10.55452/1998-6688-2025-22-2-141-154