Preview

Вестник Казахстанско-Британского технического университета

Расширенный поиск

ОБЗОР СО-СОДЕРЖАЩИХ ПЕРОВСКИТОПОДОБНЫХ КАТАЛИЗАТОРОВ. СИНТЕЗ И ПРИМЕНЕНИЕ

Аннотация

В настоящее время сложные оксиды со структурой перовскита широко используются в катализе благодаря уникальному набору физико-химических свойств. В связи с этим в работе рассмотрены важнейшие научные труды по методам синтеза и изучения физико-химических свойств Со-содержащих катализаторов со структурой перовскита, используемых в синтезе Фишера-Тропша. К перовскитоподобным оксидам относится многочисленный ряд смешанных оксидов общей формулы ABO3, где в качестве катионов А и В могут выступать катионы металлов, которые удовлетворяют условию электронейтральности (суммарный заряд +6) и определенным стерическим соотношениям. Катионы А обычно имеют ионные радиусы, близкие к кислородному, и могут быть представлены редкоземельными (La, Pr, Sm, Ce), щелочноземельными (Ca, Mg, Ba, Sr) либо щелочными (Na, K) металлами. Катионы в положении В должны иметь значительно меньший ионный радиус, и в этом качестве могут выступать большинство переходных металлов (Fe, Ni, Co, Cu, Ti, Cr, Ru, Mn и др.). Золь-гель, цитратный и механохимические методы широко используются при синтезе катализаторов со структурой перовскита. Активность и селективность катализаторов со структурой перовскита зависят от способа синтеза, размера площади поверхности, а также от природы носителя.

Об авторах

Г. Д. Джетписбаева
Таразский государственный университет им. М.Х. Дулати

докторант



Б. К. Масалимова
Таразский государственный университет им. М.Х. Дулати

к.х.н., доцент



Список литературы

1. Davis B.H., Fischer-Tropsch synthesis: Overview of reactor development and future potentialities. Topics in catalysis, 2005. V.32, P. 143 –168.

2. Хасин А.А. Основные пути переработки природного газа в компоненты топлив и ценные химические продукты. Учебное пособие. – Новосибирск, 2018. – С. 19-20.

3. Pan X., Fan Zh., Chen W., Ding Yu., Luo H., Bao X. Enhanced ethanol production inside carbonnanotube reactors containing catalytic particles. Nature Materials. 2007. V. 6. P. 507–511.

4. Zhang J., Li H. Perovskite. Crystallography, Chemistry and Catalytic Perfomance. New York: Nova Science Publishers Inc. 2013.

5. Zhu J., Li H., Zhong L., Xiao P., Xu X., Yang X., Zhao Z., Li J. Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis. ACS Catalysis. 2014. V.4. P. 2917-2940.

6. Luk H.T., Status and prospects in higher alcohols synthesis from syngas. Chemical Society Reviews. 2017. V.46. P. 1358-1426.

7. Royer S., Duprez D., Can F., Courtois X., Batiot-Dupeyrat C., Laassiri S., Alamdari H. Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality. Chemical Reviews, 2014. V. 114. P. 10292−10368.

8. Sami Vasala, Maarit Karppinen. A2B0B00O6 perovskites: A review. Progress in Solid State Chemistry 2015. V.43. 1-36

9. Pena M. A., Fierro J.L.G.. Chemical Structures and Performance of Perovskite Oxides Chemical Reviews. 2001. V.101. P. 1981 – 2017.

10. Александров К.С., Безносиков Б.В. Перовскитоподобные кристаллы. – Новосибирск: Наука. Сибирское предприятие РАН. – 1997. – C. 216.

11. Немудрый А.П. Кислородный транспорт в нестехиометрических перовскитах со смешанной кислород-электронной проводимостью на основе кобальтита и феррита стронция. Диссертация на соискание ученой степени доктора химических наук, ИХТТиМ СО РАН. – Новосибирск, 2010.

12. Pena M.A., Fierro J.L.G. Chemical structures and performance of perovskite oxides. Chemical Reviews. 2001. V. 101. P. 1981–2017.

13. Libby W.F. Promising catalyst for auto exhaust. Science. 1971. V. 171. P. 499.

14. Ciambelli P., Cimino S., De Rossi S., Lisi L., Minelli G., Porta P., Russo G. AFeO3 (A=La, Nd, Sm) and LaFe1−xMgxO3 perovskites as methane combustion and CO oxidation catalysts: structural, redox and catalytic properties. Applied Catalysis B: Environmental. 2001. V. 29. I. 4. P. 239-250.

15. Luminita P., Barbara M., Marija K., Mariana S., Monica C., Maria Z., Phase formation and electrical properties of the LaCoO3 obtained by water-based sol-gel method with citric acid Processing and Application of Ceramics 2009. V.3.

16. Wang Z., Kumar N., James J. Spivey, Preparation and characterization of lanthanum-romoted cobalt–copper catalysts for the conversion of syngas to higher oxygenates: Formation of cobalt carbide. Journal of Catalysis 2016. V. 339 P. 1–8.

17. Yuzhen F., Yuan L., Wei D., Junhai L. Cu-Co bi-metal catalyst prepared by perovskite CuO/ LaCoO3 used for higher alcohol synthesis from syngas. Journal of Energy Chemistry 2014. V. 23. P. 527–534.

18. Tien Thao N., Le Thanh Son. Production of cobalt-copper from partial reduction of La(Co,Cu)O3 perovskites for CO hydrogenation. Journal of Science: Advanced Materials and Devices 2016. V.1 P. 337-342.

19. Tien-Thao N., Zahedi-Niaki M. H., Alamdari H., Kaliaguine S., Conversion of syngas to higher alcohols over nanosized LaCo 0.7Cu 0.3O 3 perovskite precursors. Applied Catalysis A: General, 2007. V.326. P. 152–163.

20. Tien-Thao N., Alamdari H., Kaliaguine S.. Characterization and reactivity of nanoscale La(Co,Cu) O3 perovskite catalyst precursors for CO hydrogenation. Journal of Solid State Chemistry, 2008. V.181. P. 2006–2019.

21. Wang Sh., Xu X., Junjiang Zhu, Duihai Tang, Zhen Zhao. Effect of preparation method on physicochemical properties and catalytic performances of LaCoO3 perovskite for CO oxidation. Journal of Rare Earths 2019. V. 37 P. 970-977.

22. Yongxia Wanga, Xiangzhi Cui, Yongsheng Li, Zhu Shu, Hangrong Chen, Jianlin Shi, A simple co-nanocasting method to synthesize high surface area mesoporous LaCoO3 oxides for CO and NO oxidations. Microporous and Mesoporous Materials 2013. V. 176. P. 8–15.

23. Farhanian Moghadam S., Malekzadeh A., Ghiasi M., Karimi F., Mortazavi Y., Khodadadi A. Manganese Oxide Promoted LaCoO3 Nano-Perovskite for Oxidation of a Model Exhaust Gas. Iranian Journal of Chemical Engineering 2012. V. 9, P. 22-33.

24. Ao, M. and Pham, G. and Sage, V. Pareek, V. Structure and activity of strontium substituted LaCoO3 perovskite catalysts for syngas conversion. Journal of Molecular Catalysis A: Chemical, 2016. V.416 P. 96–104.

25. Ao M. Pham G. H., Sage V., Pareek V. Selectivity enhancement for higher alcohol product in Fischer- Tropsch synthesis over nickel-substituted La0.9Sr0.1CoO3 perovskite catalysts Fuel, 2017. V.206. P. 390–400.

26. Wang Y., Ren J., Wang Y., Zhang F., Liu X., Guo Y. Nanocasted Synthesis of Mesoporous LaCoO3 Perovskite with Extremely High Surface Area and Excellent Activity in Methane Combustion. Journal Physical Chemistry C, 2008. V.39 Iss. 112 P.15293–15298.

27. G. Liu, Y. Geng, D. Pan, Y. Zhang, T. Niu, Y. Liu, Fuel Processing Technology, 128 (2014) 289-296.

28. D. He, Y. Ding, H. Luo, C. Li, Journal of Molecular Catalysis A: Chemical, 208 (2004) 267-271.


Рецензия

Для цитирования:


Джетписбаева Г.Д., Масалимова Б.К. ОБЗОР СО-СОДЕРЖАЩИХ ПЕРОВСКИТОПОДОБНЫХ КАТАЛИЗАТОРОВ. СИНТЕЗ И ПРИМЕНЕНИЕ. Вестник Казахстанско-Британского технического университета. 2020;17(3):54-62.

For citation:


Jetpisbayeva G., Massalimova B. REVIEW OF CО-CONTAINING PEROVSKY-LIKE CATALYSTS. SYNTHESIS AND APPLICATION. Herald of the Kazakh-British technical university. 2020;17(3):54-62. (In Kazakh)

Просмотров: 257


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)