Preview

Herald of the Kazakh-British technical university

Advanced search

MICROWAVE PROCESSING OF COFFEE WASTE TO PRODUCE POROUS CARBON MATERIALS AND THEIR USE IN SILICON-CARBON ANODES OF LITHIUM-ION BATTERIES

https://doi.org/10.55452/1998-6688-2025-22-1-318-329

Abstract

This paper presents the synthesis of a composite anode material for lithium-ion batteries consisting of graphenelike carbon obtained from coffee waste and silicon. The carbon material was synthesized by microwave carbonation and physical activation using CO₂. This method yields a porous structure with an exceptional specific surface area of 1300 m2/g after physical activation. Such a porous structure is crucial for efficient lithium-ion adsorption, high charge transfer, and improved overall battery performance. The morphology and structure of the material were analyzed using SEM and Raman spectroscopy, which confirmed the formation of highly porous graphenelike carbon. The electrochemical characteristic demonstrated a specific capacity of 350 mAh/g for 160 cycles, indicating excellent long-term stability. Coulomb efficiency remained at 98–100%, demonstrating high reversibility of electrochemical reactions. Electrochemical impedance spectroscopy has revealed a moderate 550 ohm charge transfer resistance for the composite material, which highlights the efficient electron transfer between the material and the electrolyte. These results highlight the potential of microwave carbonation and physical activation of CO₂ to produce high-performance, cost-effective anode materials, paving the way for their application in next-generation lithium-ion batteries.

About the Authors

A. Duisenbek
KazNRTU named after K.I. Satbayev; Institute of Combustion Problems
Kazakhstan

 Doctoral student 

Almaty

 



E. Beissenova
KazNRTU named after K.I. Satbayev; Institute of Combustion Problems
Russian Federation

 PhD 

Almaty



R. Beissenov
Institute of Combustion Problems; Kazakh-British Technical University
Russian Federation

 PhD 

Almaty



K. Askaruly
KazNRTU named after K.I. Satbayev; Institute of Combustion Problems; G. Daukeev Almaty University of Energy and Communications
Russian Federation

PhD 

Almaty



References

1. Armand M., Axmann P., Bresser D., Copley M., Edström K., Ekberg C., Guyomard D., Lestriez B., Novák P., Petranikova M., Porcher W., Trabesinger S., Wohlfahrt-Mehrens M., Zhang H. Lithium-ion batteries – Current state of the art and anticipated developments, J. Power Sources, 2020, vol. 479, p. 228708. https://doi.org/10.1016/j.jpowsour.2020.228708.

2. Khan M., Yan S., Ali M., Mahmood F., Zheng Y., Li G., Liu J., Song X., Wang Y. Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries: Overcoming Challenges and Real-World Applications, Nano-Micro Lett., 2024, vol. 16, no. 179. https://doi.org/10.1007/s40820-024-01388-3.

3. Grey C.P., Hall D.S. Prospects for lithium-ion batteries and beyond–a 2030 vision, Nat. Commun., 2020, vol. 11, p. 6279. https://doi.org/10.1038/s41467-020-19991-4.

4. Deng D. Li-ion batteries: basics, progress, and challenges, Energy Sci. Eng., 2015, vol. 3, pp. 385–418. https://doi.org/10.1002/ese3.95.

5. Vernardou, Psaltakis G., Tsubota T., Katsarakis N., Kalderis D. Challenges and perspectives of biochar anodes for lithium-ion batteries, Future Batter., 2024, vol. 4, p. 100011. https://doi.org/10.1016/j.fub.2024.100011.

6. Feyzi E., A.K. M R, X. Li, Deng S., Nanda J., Zaghib K. A comprehensive review of silicon anodes for high-energy lithium-ion batteries: Challenges, latest developments, and perspectives, Energy, 2024, vol. 5, p. 100176. https://doi.org/10.1016/j.nxener.2024.100176.

7. Zhang C. Review-Recent development on silicon-based anodes for high-performance Lithium-Ion Batteries, E3S Web Conf., 2021, vol. 252, p. 03004. https://doi.org/10.1051/e3sconf/202125203004.

8. Sedláčková E., Klusoňová N., Bursa R., Procházka V., Dvořáková P., Jílková K., Jankovský O., Macháček J., Havlík Míka M. Characterization of Silicon-based fibers prepared by electrospinning for potential Li-ion battery anodes, Mater. Lett., 2024, vol. 377, p. 137352. https://doi.org/10.1016/j.matlet.2024.137352.

9. Toki G.F.I., Hossain M.K., Rehman W.U., Manj R.Z.A., Wang L., Yang J. Recent progress and challenges in silicon-based anode materials for lithium-ion batteries, Ind. Chem. Mater., 2024, vol. 2, pp. 226–269. https://doi.org/10.1039/D3IM00115F.

10. Li P., Zhao G., Zheng X., Xu X., Yao C., Sun W., Dou S.X. Recent progress on silicon-based anode materials for practical lithium-ion battery applications, Energy Storage Mater., 2018, vol. 15, pp. 422–446. https://doi.org/10.1016/j.ensm.2018.07.014.

11. Franco Gonzalez A., Yang N.-H., Liu R.-S. Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives, J. Phys. Chem. C, 2017, vol. 121, pp. 27775–27787. https://doi.org/10.1021/acs.jpcc.7b07793.

12. Andersen H.F., Foss C.E.L., Voje J., Tronstad R., Mokkelbost T., Vullum P.E., Ulvestad A., Kirkengen M., Mæhlen J.P. Silicon-Carbon composite anodes from industrial battery grade silicon, Sci. Rep., 2019, vol. 9, p. 14814. https://doi.org/10.1038/s41598-019-51324-4.

13. Mei Y., He Y., Zhu H., Ma Z., Pu Y., Chen Z., Li P., He L., Wang W., Tang H. Recent Advances in the Structural Design of Silicon/Carbon Anodes for Lithium Ion Batteries: A Review, Coatings, 2023, vol. 13, no. 436. https://doi.org/10.3390/coatings13020436.

14. Lv X., Wei W., Huang B., Dai Y. Achieving high energy density for lithium-ion battery anodes by Si/C nanostructure design, J. Mater. Chem. A, 2019, vol. 7, pp. 2165–2171. https://doi.org/10.1039/C8TA10936B.

15. Liu Y., Wen Z.Y., Wang X.Y., Hirano A., Imanishi N., Takeda Y. Electrochemical behaviors of Si/C composite synthesized from F-containing precursors, J. Power Sources, 2009, vol. 189, pp. 733–737. https://doi.org/10.1016/j.jpowsour.2008.08.016.

16. Askaruly K., Korobeinyk A.V., Azat S., Yeleuov M., Taurbekov A., Toshtay K., Tauanov Z., Su X. The electrochemical behavior of silica and activated carbon materials derived from the rice husk waste for liion cells, Diam. Relat. Mater., 2023, vol. 133, p. 109759. https://doi.org/10.1016/j.diamond.2023.109759.

17. Askaruly K., Idrissov N., Abdisattar A., Azat S., Kuli Z., Yeleuov M., Malchik F., Daulbayev C., Yszhan Y., Sarsembayeva B., Nysanbayeva S. Utilizing rice husk-derived Si/C composites to enhance energy capacity and cycle sustainability of lithium-ion batteries, Diam. Relat. Mater., 2024, vol. 149, p. 111631. https://doi.org/10.1016/j.diamond.2024.111631.

18. Askaruly K., Yeleuov M., Taurbekov A., Sarsembayeva B., Tolynbekov A., Zhylybayeva N., Azat S., Abdisattar A., Daulbayev C. A facile synthesis of graphite-coated amorphous SiO2 from biosources

19. as anode material for libs, Mater. Today Commun., 2023, vol. 34, p. 105136. https://doi.org/10.1016/j.mtcomm.2022.105136.

20. Sehrawat P., Shabir A., Abid, Julien C.M., Islam S.S. Recent trends in silicon/graphene nanocomposite anodes for lithium-ion batteries, J. Power Sources, 2021, vol. 501, p. 229709. https://doi.org/10.1016/j.jpowsour.2021.229709.

21. Patel S.H. Numerical modeling of the failure mechanisms in Si thin film anode for Li-ion batteries, Master of Science in Mechanical Engineering, Michigan Technological University, 2011. https://doi.org/10.37099/mtu.dc.etds/396.

22. Lee J.K., Smith K.B., Hayner C.M., Kung H.H. Silicon nanoparticles–graphene paper composites for Li ion battery anodes, Chem. Commun., 2010, vol. 46, p. 2025. https://doi.org/10.1039/b919738a.

23. Kim S.K., Kim C., Chang H., Jang H.D. Preparation of Silicon-Carbon-Graphene Composites and their Application to Lithium Ion Secondary Battery, Aerosol Air Qual. Res., 2022, vol. 22, p. 220009. https://doi.org/10.4209/aaqr.220009.

24. Dou F., Shi L., Chen G., Zhang D. Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries, Electrochem. Energy Rev., 2019, vol. 2, pp. 149–198. https://doi.org/10.1007/s41918-018-00028-w.

25. Datta M.K., Kumta P.N. Silicon and carbon based composite anodes for lithium ion batteries, J. Power Sources, 2006, vol. 158, pp. 557–563. https://doi.org/10.1016/j.jpowsour.2005.09.016.

26. Beissenov R., Duisenbek A., Beisenova Y., Askaruly K., Yeleuov M., Abdisattar A. Activated biomassderived 3-dimensional porous graphene-like carbon for high-performance energy storage electrode materials, Diam. Relat. Mater., 2024, vol. 149, p. 111588. https://doi.org/10.1016/j.diamond.2024.111588.

27. Duisenbek A., Beisenova Y., Beissenov R., Askaruly K., Yeleuov M., Abdisattar A. Onion huskderived high surface area graphene-like carbon for supercapacitor electrode material application, Heliyon, 2024, vol. 10. https://doi.org/10.1016/j.heliyon.2024.e32915.

28. Liew R.K., Azwar E., Yek P.N.Y., Lim X.Y., Cheng C.K., Ng J.-H., Jusoh A., Lam W.H., Ibrahim M.D., Ma N.L., Lam S.S. Microwave pyrolysis with KOH/NaOH mixture activation: A new approach to produce micro-mesoporous activated carbon for textile dye adsorption, Bioresour. Technol., 2018, vol. 266, pp. 1–10. https://doi.org/10.1016/j.biortech.2018.06.051.

29. Van Thuan Le, Nguyen Khoa Dang, My Loan Phung Le, Van Hoang Nguyen, Van Man Tran, Minh Thu Nguyen, Nhu Hoa Thi Tran, Tuan Loi Nguyen, Il Tae Kim, ZnCl2-based activation for converting spent coffee grounds into a robust anode for Li-ion batteries, Biomass and Bioenergy, 2024, vol. 181, p. 107058, https://doi.org/10.1016/j.biombioe.2024.107058

30. Tsai S.-Y., Muruganantham R., Tai S.-H., Chang B.K., Wu S.-C., Chueh Y.-L., Liu W.-R. Coffee grounds-derived carbon as high performance anode materials for energy storage applications, J. Taiwan Inst. Chem. Eng., 2019, vol. 97, pp. 178–188. https://doi.org/10.1016/j.jtice.2019.01.020.

31. Yanbing Cheng, Xiping Zhang, Shaojie Qin, Jun Li, Lijun Zhang, Yiyong Zhang, Ning Du, Ziyi Zhu, Xue Li, Yingjie Zhang, Renewable resources from nature: biomass-derived carbon for composite materials in electrochemical energy storage devices, Journal of Energy Storage, 15 January 2025, vol. 106, p. 114692, https://doi.org/10.1016/j.est.2024.114692.

32. Ao W., Fu J., Mao X., Wahab N., Ran C., Kang Q., Liu Y., Jiang Z., Dai J., Bi X. Characterization and analysis of activated carbons prepared from furfural residues by microwave-assisted pyrolysis and activation, Fuel Process. Technol., 2021, vol. 213, p. 106640. https://doi.org/10.1016/j.fuproc.2020.106640.

33. Foo K.Y., Hameed B.H. Preparation of activated carbon by microwave heating of langsat (Lansium domesticum) empty fruit bunch waste, Bioresour. Technol., 2012, vol. 116, pp. 522–525. https://doi.org/10.1016/j.biortech.2012.03.123.

34. Grycova B., Pryszcz A., Lestinsky P., Chamradova K. Influence of potassium hydroxide and method of carbonization treatment in garden and corn waste microwave pyrolysis, Biomass Bioenergy, 2018, vol. 118, pp. 40–45. https://doi.org/10.1016/j.biombioe.2018.07.022.

35. Hessien M. Microwave-Assisted Hydrothermal Carbonization of Pomegranate Peels into Hydrochar for Environmental Applications, Energies, 2022, vol. 15, p. 3629. https://doi.org/10.3390/en15103629.

36. Lam S.S., Liew R.K., Wong Y.M., Azwar E., Jusoh A., Wahi R. Activated Carbon for Catalyst Support from Microwave Pyrolysis of Orange Peel, Waste Biomass Valorization, 2017, vol. 8, pp. 2109–2119. https://doi.org/10.1007/s12649-016-9804-x.

37. Yang T., Lua A.C. Characteristics of activated carbons prepared from pistachio-nut shells by physical activation, J. Colloid Interface Sci., 2023, vol. 267, pp. 408–417. https://doi.org/10.1016/S0021-9797(03)00689-1.

38. Chung D.Y., Son Y.J., Yoo J.M., Kang J.S., Ahn C.-Y., Park S., Sung Y.-E. Coffee Waste-Derived Hierarchical Porous Carbon as a Highly Active and Durable Electrocatalyst for Electrochemical Energy Applications, ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 41303–41313. https://doi.org/10.1021/acsami.7b13799.

39. Peng Z., Guo Z., Chu W., Wei M. Facile synthesis of high-surface-area activated carbon from coal for supercapacitors and high CO 2 sorption, RSC Adv., 2016, vol. 6, pp. 42019–42028. https://doi.org/10.1039/C5RA26044B.

40. Memon N.K., Tse S.D., Al-Sharab J.F., Yamaguchi H., Goncalves A.-M.B., Kear B.H., Jaluria Y., Andrei E.Y., Chhowalla M. Flame synthesis of graphene films in open environments, Carbon, 2011, vol. 49, pp. 5064–5070. https://doi.org/10.1016/j.carbon.2011.07.024.

41. Pujol D., Liu C., Gominho J., Olivella M.À., Fiol N., Villaescusa I., Pereira H. The chemical composition of exhausted coffee waste, Ind. Crops Prod., 2013, vol. 50, pp. 423–429. https://doi.org/10.1016/j.indcrop.2013.07.056.


Review

For citations:


Duisenbek A., Beissenova E., Beissenov R., Askaruly K. MICROWAVE PROCESSING OF COFFEE WASTE TO PRODUCE POROUS CARBON MATERIALS AND THEIR USE IN SILICON-CARBON ANODES OF LITHIUM-ION BATTERIES. Herald of the Kazakh-British technical university. 2025;22(1):318-329. (In Russ.) https://doi.org/10.55452/1998-6688-2025-22-1-318-329

Views: 64


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)