Preview

Herald of the Kazakh-British technical university

Advanced search

IMAX – A COMPACT X-RAY MICROTOMOGRAPHY INSTRUMENT FOR MATERIAL RESEARCH

https://doi.org/10.55452/1998-6688-2025-22-1-298-306

Abstract

As the methods, instrumentation, and resolution of three-dimensional spatial analysis have improved over the past twenty years, it is now possible to image the internal microstructure of multiphase materials in detail in three dimensions. Three-dimensional X-ray microtomography offers a unique opportunity for high spatial resolution imaging that can be achieved in compact desktop systems using X-ray microfocus sources. Recently, a modern desktop cone-beam X-ray microtomography system for quantitative analysis of materials in three dimensions was installed at the Institute of Nuclear Physics of the Ministry of Energy of the Republic of Kazakhstan. This paper presents the design, description of the main components, and technical parameters of this X-ray microtomography system, called IMAX. This system is designed to acquire, process, store X-ray images, and reconstruct three-dimensional data from angular projections for the study of internal structures and non-destructive testing of materials. The system consists of a microfocus X-ray source providing an X-ray energy range from 35 to 80 keV, a flat panel scintillation detector system allowing high-resolution digital imaging, optomechanical platforms for sample positioning, and radiation shielding. The first results of test measurements using this X-ray system are presented.

About the Authors

I. Chuprakov
Laboratory of Neutron Physics, Institute of Nuclear Physics; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research
Kazakhstan

 PhD 

Almaty

Dubna



K. Nazarov
Laboratory of Neutron Physics, Institute of Nuclear Physics; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research; Al-Farabi Kazakh National University
Kazakhstan

 PhD 

Almaty

Dubna



B. Mukhametuly
Laboratory of Neutron Physics, Institute of Nuclear Physics; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research; Al-Farabi Kazakh National University
Kazakhstan

 PhD 

Almaty

Dubna



A. Bekbayev
Laboratory of Neutron Physics, Institute of Nuclear Physics; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research; Al-Farabi Kazakh National University
Kazakhstan

 PhD 

Almaty

Dubna



Y. Arynbek
Laboratory of Neutron Physics, Institute of Nuclear Physics; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research; Al-Farabi Kazakh National University
Kazakhstan

 Master 

Almaty

Dubna



M. Kenessarin
Laboratory of Neutron Physics, Institute of Nuclear Physics; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research
Kazakhstan

 Master 

Almaty

Dubna



Y. Bazarbayev
Al-Farabi Kazakh National University
Kazakhstan

 Master 

Almaty



E. Myrzabekova
Laboratory of Neutron Physics, Institute of Nuclear Physics; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research; Al-Farabi Kazakh National University
Kazakhstan

 Master 

Almaty

Dubna

 



A. Nazarova
Laboratory of Neutron Physics, Institute of Nuclear Physics; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research
Russian Federation

PhD 

Almaty

Dubna



B. Abdurakhimov
Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research
Russian Federation

 PhD 

 Dubna 



I. Zel
Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research
Russian Federation

 Cand. Phys.-Math. Sc. 

 Dubna 



References

1. Nazarov K.M., Muhametuly B., Kenzhin E.A., Kichanov S.E., Kozlenko D.P., Lukin E.V. and A.A. Shaimerdenov. Nucl. Instrum. Methods Phys. Res. A., 2020, vol. 982, p. 164572. https://doi.org/10.1016/j.nima.2020.164572.

2. Muhametuly B., Kichanov S.E., Kenzhin E.A., Kozlenko D.P., Nazarov K.M., Shaimerdenov A.A., Bazarbaev E. and E.V. Lukin, J. Surf. Investig. X-ray Synchrotron Neutron Tech., 2019, vol. 13, pp. 877–879. http://doi.org/10.1134/S1027451019050082.

3. Dyussambayev D.S., Aitkulov M.T., Shaimerdenov A.A., Mukhametuly B., Nazarov K., Kaestner A., Pessoa Barradas N., Sairanbayev D.S., Dikov A.S. and E.M. Bazarbayev. Nucl. Instrum. Methods Phys. Res. A., 2022, vol. 1039, p. 167078. https://doi.org/10.1016/j.nima.2022.167078.

4. Nazarov K.M., Mukhametuly B., Kichanov S.E., Zholdybayev T.K., Shaimerdenov A.A, Karakozov K.B., Dyussambayev D.S., Aitkulov M.T., Yerdauletov M., Napolskiy P., Kenessarin M., Kalymkhan E.K., Imamverdiyev N.A. and S.H. Jabarov. Eur. J. Phys. Funct. Mat., 2021, vol. 5, pp. 6–14 https://doi.org/10.32523/ejpfm.2021050101.

5. Lussani F.C., Vescovi R.F.C., Souza T.D., D., C.A.P. Leite, and C. Giles. Rev. Sci. Instrum., 2015, vol. 86, p. 063705. https://doi.org/10.1063/1.4922607.

6. Maire E., Buffiere J.Y., Salvo L., Blandin J.J., Ludwig W. and J.M. Letang. Adv. Eng, Mater., 2001, vol. 3, pp. 539–546. https://doi.org/10.1002/1527-2648(200108)3:8<539::AID-ADEM539>3.0.CO;2-6.

7. Mannes D. Phys. Procedia, 2015, vol. 69, pp. 653–660. https://doi.org/10.1016/j.phpro.2015.07.092.

8. Grolimund D., Berger D., Schreyer S.B, Borca C.N., Hartmann S., Muller F., Hovind J., Hunger K., Lehmann E.H, Vontobel P. and Wang H.A.O. J. Anal. At. Spectrom., 2011, vol. 26, pp. 1012–1023. https://doi.org/10.1016/j.phpro.2015.07.092.

9. Watanabe T., Takeichi Y., Niwa Y., Hojo M., and M. Kimura. Compos. Sci. Technol., 2020, vol. 197, p. 108244. https://doi.org/10.1016/j.compscitech.2020.108244.

10. Adibhatla A., Tuohimaa T., and F. Yang. Microsc. Microanal., 2020, vol. 26, p. 2722. https://doi.org/10.1017/S1431927620022552

11. Fella C., Balles A., Hanke R., Last A., and S. Zabler. Rev. Sci. Instrum., 2017, vol. 88, p. 123702. https://doi.org/10.1063/1.5011042.

12. Kaestner A.P., Hovind J., Boillat P., Muehlebach C., Carminati C., Zarebanadkouki M. and E.H. Lehmann. Phys. Procedia, 2017, vol. 88, pp. 314–321. https://doi.org/10.1016/j.phpro.2017.06.043.

13. Tengattini A., Lenoir N., Andò E., Giroud B., Atkins D., Beaucour J., and G. Viggiani. Nucl. Instrum. Methods Phys. Res. A., 2020, vol. 968, p. 163939. https://doi.org/10.1016/j.nima.2020.163939.

14. Lehmann E.H., Mannes D., Kaestner A.P., Hovind J., Trtik P., and M. Strobl. Appl. Sci., 2021, vol. 11, p. 3825. https://doi.org/10.3390/app11093825.

15. LaManna J.M., Hussey D.S., Baltic E., and D.L. Jacobson. Rev. Sci. Instrum., 2017, vol. 88, p. 113702. https://doi.org/10.1063/1.4989642.

16. Mayo S.C., Stevenson A.W., and S.W. Wilkins. Materials, 2012, vol. 5, pp. 937–965. https://doi.org/10.3390/ma5050937.

17. Brock J.D., and M. Sutton. Mat. Today, 2008, vol. 11, pp. 52–55. https://doi.org/10.1016/S1369-7021(08)70239-6.

18. Khoury B.M., Bigelow E.M.R., Smith L.M., Schlecht S.H., Scheller E.L., Andarawis-Puri N., and K.J. Jepsen. Connect. Tissue R., 2015, vol. 56, pp. 106–119. https://doi.org/10.3109/03008207.2015.1005211.

19. Brunke O., Neuber D., and D.K. Lehmann. MRS Online Proc. Libr., 2006, vol. 990, p. 509. https://doi.org/10.1557/PROC-0990-B05-09.

20. https://www.spellmanhv.com/ru/high-voltage-power-supplies/XRB011C.

21. https://www.bruker.com/en/products-and-solutions/preclinical-imaging/micro-ct/skyscan-1278.html

22. https://neoscan.com/system/neoscan-n70/

23. https://www.shimadzu.com/an/products/non-destructive-testing/microfocus-x-ray-ct-system/xseeker-8000/index.html

24. https://rigaku.com/products/imaging-ndt/x-ray-ct/ct-lab-hx

25. Laforsch, Christoph E., and C. Glaser. Coral Reefs, 2008, vol. 27, pp. 811–820. https://doi.org/10.1007/s00338-008-0405-4.

26. Kruszyński K.J., Kaandorp J.A., and R. van Liere. Coral Reefs, 2007, vol. 26, pp. 831–840. https://doi.org/10.1007/s00338-007-0270-6

27. Saadatfar M., Garcia-Moreno F., Hutzler S., Sheppard A.P., Knackstedt M.A., Banhart J., and D. Weaire. Colloids Surf. A: Physicochem. Eng. Aspects, 2009, vol. 344, pp. 107–112. https://doi.org/10.1016/j.colsurfa.2009.01.008.

28. Naruse W., Kondo S., Kobashi M., Kanetake N., Iwama Yu., and T. Nishiwaki. J. Japan. Inst. Light Met., 2014, vol. 64, pp. 598–603. https://doi.org/10.2464/jilm.64.598.

29. Meagher A.J., Mukherjee M., Weaire D., Hutzler S., Banhart J., and F. Garcia-Moreno. Soft Matter, 2011, vol. 7, pp. 9881–9885. http://doi.org/10.1039/C1SM05495C.

30. Morigi M.P., Casali F., and M. Bettuzzi . Appl. Phys. A, 2010, vol. 100, pp. 653–661. https://doi.org/10.1007/s00339-010-5648-6.

31. Albertin F., Bettuzzi M., Brancaccio R., Morigi M.P., and F. Casali. Heritage, 2019, vol. 2, pp. 2028–2038. https://doi.org/10.3390/heritage2030122.

32. Abdurakhimov B.A., Kichanov S.E., Talmaţchi C., Kozlenko D.P., Talmaţchi G., Belozerova N.M., Bǎlǎșoiu M., and M.C. Belc. J. Archeol. Sci. Rep., 2021, vol. 35, p. 102755. https://doi.org/10.1016/j.jasrep.2020.102755.


Review

For citations:


Chuprakov I., Nazarov K., Mukhametuly B., Bekbayev A., Arynbek Y., Kenessarin M., Bazarbayev Y., Myrzabekova E., Nazarova A., Abdurakhimov B., Zel I. IMAX – A COMPACT X-RAY MICROTOMOGRAPHY INSTRUMENT FOR MATERIAL RESEARCH. Herald of the Kazakh-British technical university. 2025;22(1):298-306. https://doi.org/10.55452/1998-6688-2025-22-1-298-306

Views: 102


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)