Preview

Herald of the Kazakh-British technical university

Advanced search

FINDING LOGARITHMIC SOLUTIONS TO A SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS

https://doi.org/10.55452/1998-6688-2025-22-1-247-258

Abstract

The purpose of this work is to study logarithmic solutions of a system of second-order partial differential equations, as well as to establish the conditions of their existence and characterize their properties. Special attention is paid to finding such solutions using the Frobenius-Latysheva method in the vicinity of a regular singular point (0,0). A method has been developed for finding recurrence relations for existing logarithmic solutions when the simple roots of the defining equations differ by integers. A concrete example shows how to construct a logarithmic solution for a homogeneous system of partial differential equations of the second order.

About the Authors

M. Zh. Talipova
Aktobe Regional University named after K. Zhubanov
Kazakhstan

 Candidate of Physical and Mathematical Sciences, Associate Professor 

 Аktobe 



A. U. Bekbauova
Aktobe Regional University named after K. Zhubanov
Kazakhstan

 Candidate of Physical and Mathematical Sciences, Associate Professor 

 Аktobe 



R. D. Seilova
Aktobe Regional University named after K. Zhubanov
Kazakhstan

 Candidate of Physical and Mathematical Sciences, Associate Professor 

 Аktobe 



References

1. Trikomi F. (1957) Lekcii po uravnenijam v chastnyh proizvodnyh, 443 p. [in Russian]

2. Smirnov M.M. (1964) Differencial'nye uravnenija v chastnyh proizvodnyh vtorogo porjadka, 206 p. [in Russian]

3. Spivakov Ju.L. (1986) Special'nye klassy reshenij linejnyh differencial'nyh uravnenij i ih prilozhenija k anizotropnoj i neodnorodnoj teorii uprugosti, 186 p. [in Russian]

4. Kamke Je. (1966) Spravochnik po differencial'nym uravnenijam v chastnyh proizvodnyh pervogo porjadka, 260 p. [in Russian]

5. Kurant R. (1964) Uravnenija s chastnymi proizvodnymi, 830 p. [in Russian]

6. Puankare A. (1971) Izbrannye metody. Novye metody nebesnoj mehaniki, 771 p. [in Russian]

7. Assanova A.T., Bekbauova A.U., Talipova M.Zh. (2023) On a non-local problem for system of partial differential equations of hyperbolic type in a specific domain. International Journal of Mathematics and Physics.

8. Assanova A.T. (2024) On a solvability to the problem with parameter for differential-algebraic equations. Lobachevskii Journal of Mathematics.

9. Bekbauova A.U., Meirambekuly A. (2025) Construction of solutions in a broad sense of systems of first order partial differential equations with periodic conditions. Mathematical Methods in the Applied Sciences.

10. Tasmambetov Zh.N., Tereshhenko N.I. (1974) O logarifmicheskih reshenijah sistemy differencial'nyh uravnenij v chastnyh proizvodnyh vtorogo porjadka. Sbornik trudov inst. mat. i meh. AN KazSSR, pp. 236–244. [in Russian]

11. Tasmambetov Zh. (2009) About logarithmic decisions of the special system of the differential equations in partial derivatives. Abstracts of the third congress of the World mathematical Society of Turkic countries. Almaty, pp. 407–411.

12. Tasmambetov Zh.N., Isenova A.A. (2020) Normal'no-reguljarnye i logarifmicheskie reshenija sistemy Uittekera sostojashhej iz treh uravnenij. Tradicionnaja mezhdunarodnaja aprel'skaja matematicheskaja konferencija v chest' Dnja rabotnikov nauki RK. Tezisy dokladov. Almaty, pp. 167–168.

13. Isenova A.A. (2022) Normal'no-reguljarnye i logarifmicheskie reshenija sistemy Uittekera sostojashhej iz treh uravnenij. IX mezhdunarodnaja nauchnaja konferencija «Problemy differencial'nyh uravnenij, analiza i algebry». Aktobe, pp. 281–288.

14. Latysheva K.Ja., Tereshhenko N.I. (1970) Lekcii po analiticheskoj teorii differencial'nyh uravnenij i ih prilozhenija. Metod Frobeniusa-Latyshevoj. Kiev: Izd. Instituta matematiki AN USSR, 394 p. [in Russian]

15. Tasmambetov Zh.N. (1991) Postroenie reshenija sistemy differencial'nyh uravnenij v chastnyh proizvodnyh s reguljarnoj osobennost'ju obobshhennym metodom Frobeniusa (Prepr. /AN USSR. Institut matematiki: 91.29) Kiev, 44 p. [in Russian]

16. Latysheva K.Ja., Tereshhenko N.I., Orel G.S. (1974) Normal'no-reguljarnye reshenija i ih prilozhenija. Kiev: Vishha shkola, 136 p. [in Russian]

17. Issenova A.A, Tasmambetov Z.N, Talipova M.Z. (2022) Construction of solutions Hypergeometric system of Horn type in the form of Laguerre polynomials. Lobachevskii Journal of Mathematics, vol. 43, no. 11, pp. 3167–3173. [in Russian]

18. Tasmambetov Zh.N., Nurgalieva D.M., Talipova M.Zh. O primenenii metoda Frobeniusa-Latyshevoj pri reshenii zadach matematicheskoj fiziki. Materialy 6-oj Kazahstanskoj nauch. konf. po fizike tverdogo tela. Aktobe, 4–6 oktjabrja 2000 g., pp. 174–177. [in Russian]

19. Tasmambetov Z.N., Talipova M.Z. (2017) Construction of normal-regular decisions of Bessel typed special system. AIP Conference Proceedings, vol. 1880. https://doi.org/10.1063/1.5000629.

20. Tasmambetov Zh.N. (2015) Postroenie normal'nyh i normal'no-reguljarnyh reshenij special'nyh system differencial'nyh uravnenij v chastnyh proizvodnyh vtorogo porjadka. IP Zhandildaeva S.T., Aktobe, 464 p. [in Russian]


Review

For citations:


Talipova M.Zh., Bekbauova A.U., Seilova R.D. FINDING LOGARITHMIC SOLUTIONS TO A SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS. Herald of the Kazakh-British technical university. 2025;22(1):247-258. (In Russ.) https://doi.org/10.55452/1998-6688-2025-22-1-247-258

Views: 73


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)