CALCULATION ALGORITHM OF THE ELECTRIC FIELD BY THE METHOD OF INTEGRAL EQUATIONS IN A CONDUCTING MEDIUM WITH 3D LOCAL IN HOMOGENEITY AND NON-PLANAR RELIEF
Abstract
This paper is devoted to the development and testing of modeling of electrical resistivity tomography for a 3D medium with the ground surface relief and immersed inhomogeneity. The direct problem is solved by the method of integral equations. The paper presents a mathematical model, a numerical algorithm for solving system of the integral equations for the relief medium containing a 3D local inclusion and the results of testing this algorithm by comparing it with the results obtained by the finite element method. The commercial universal program COMSOL Multiphysics is used to model the electric field by the finite element method. Testing results showed that the application of the method of integral equations in solving geophysical problems does not require large computing resources. The method of integral equations is the most accurate and fastest method.
About the Authors
M. TurarovaKazakhstan
P. Kaznacheev
Kazakhstan
B. Mukanova
Kazakhstan
I. Modin
Kazakhstan
T. Mirgalikyzy
Kazakhstan
References
1. А.А. Бобачев, Д.К. Большаков, И.Н. Модин, В.А. Шевнин. Электроразведка: пособие по электроразведочной практике для студентов геофизических специальностей. – Т. II. Малоглубинная электроразведка. Под ред. Проф В.А. Шевнина, доц. А.А. Бобачева. – 2-ое изд. – М.: МГУ, 2013. – 124 с.
2. А.А. Бобачев, А.А. Горбунов, И.Н. Модин, В.А. Шевнин. Электротомография методом сопротивлений и вызванной поляризации // Приборы и системы разведочной геофизики. – 2006. – N02. – С. 14-17.
3. Zohdy A.A.R. A new method for the automatic interpretation of Schlumberger and Wenner sounding curves // Geophysics. – 1989. – Vol. 54, no. 2. – pp. 245-253.
4. A. Dey, H.F. Morrison, «Resistivity modeling for arbitrary shaped two-dimensional structures» // Geophysical Prospecting. – 1979. – vol. 27. – no. 1, pp. 106-136.
5. А.А. Бобачев, И.Н. Модин, Е.В. Перваго, В.А. Шевнин. Многоэлектродные электрические зондирования в условиях горизонтально-неоднородных сред. Разведочная геофизика. – Москва: Геоинформмарк, 1996. – 50 с.
6. Barker R. D. The offset system of electrical resistivity sounding and its use with a multicore cable // Geophysical Prospecting. – 1981. – Vol. 29. – no. 1. – pp. 128-143.
7. А.А. Бобачев, М.Н. Марченко, И.Н. Модин, Е.В. Перваго, А.В. Урусова, В.А. Шевнин. Новые подходы к электрическим зондированиям горизонтально-неоднородных сред // Физика Земли. – 1995. – № 12. – С. 79-90.
8. M.H. Loke, R.D. Barker. Least-squares deconvolution of apparent resistivity pseudosections // Geophysics. – 1995. – vol. 60. – no. 6. – рр. 1682-1690.
9. Модин И.Н., Бобачев А.А. Электротомография со стандартными электроразведочными комплексами // Разведка и охрана недр. – 2008. – № 1. – С. 43-47.
10. Loke M.H. Topographic modelling in resistivity imaging inversion // 62nd EAGE Conference and Technical Exhibition, Extended Abstracts. –Glasgow, Scotland, 29 May-2 June 2000. – pp. 1-4.
11. Erdogan E., Demirci I., Candasayar M.E. Incorporating topography into 2D resistivity modeling using finite-element and finite-difference approaches // Geophysics. – 2008. – vol. 73. – no. 3. – pp. 135-142.
12. Demirci I., Erdogan E., Candasayar M.E. Two-dimensional inversion of direct current resistivity data incorporating topography by using finite difference techniques with triangle cells: Investigation of Kera fault zone in western Crete // Geophysics. – 2012. – Vol. 77. –no. 1. – pp. 67-75.
13. Penz S., Chauris H., Donno D., Mehl C. Resistivity modeling with topography // Geophys. J. Int. – 2013. – Vol. 194. – no. 3. – pp. 1486-1497.
14. Mukanova B., Mirgalikyzy T. Modeling the impact of relief boundaries in solving the direct problem of direct current electrical sounding //Communications in Computer and Information Science. Mathematical Modeling of Technological Processes: International Conference, CITech-2015. – Almaty, Kazakhstan, September 24-27, 2015. – Proceedings, Springer 2015, pp.117-123, SCOPUS.
15. Mirgalikyzy T., Mukanova B., Modin I. Method of Integral Equations for the Problem of Electrical Tomography in a Medium with Ground Surface Relief // Journal of Applied Mathematic. – vol. 2015, Article ID 207021, doi:10.1155/2015/207021, ISSN (1110-757X) (Print), ISSN (1687-0042) (Online), SCOPUS.
16. Mukanova B, Mirgalikyzy T., Rakisheva D. Modelling the Influence of Ground Surface Relief on Electric Sounding Curves Using the Integral Equations Method // Mathematical Problems in Engineering – vol. 2017, Article ID 9079475, DOI: 10.1155/2017/9079475,p.1-10. – [Электронный ресурс] – Режим доступа: https://doi.org/10.1155/2017/9079475. Дата обращения (19.02.2019).
17. Mukanova B., Modin I., The Boundary Element Method in Geophysical Survey, t: 4, 2017, Springer.
Review
For citations:
Turarova M., Kaznacheev P., Mukanova B., Modin I., Mirgalikyzy T. CALCULATION ALGORITHM OF THE ELECTRIC FIELD BY THE METHOD OF INTEGRAL EQUATIONS IN A CONDUCTING MEDIUM WITH 3D LOCAL IN HOMOGENEITY AND NON-PLANAR RELIEF. Herald of the Kazakh-British Technical University. 2020;17(2):205-217. (In Russ.)