Preview

Herald of the Kazakh-British technical university

Advanced search

THE REGULARIZED TRACE OF THE STURM-LIOUVILLE OPERATOR ON A STAR-GRAPH

https://doi.org/10.55452/1998-6688-2025-22-1-229-238

Abstract

The paper investigates a second-order differential operator on a star graph. A special class of differential operators on a star graph with simple eigenvalues is chosen. The structure of the characteristic determinants of such operators is studied. In the case of the Sturm-Liouville operator with constant coefficients, the formula of the first regularized trace is written out. The main purpose of this work is to calculate the regularized trace of an operator on a star graph, which differs from calculations for similar operators on segments considered in other papers. The article also describes in detail the properties of the eigenvalues of an operator, including the theorem that the eigenvalues of an operator coincide with the zeros of an entire function, and the algebraic multiplicity of each eigenvalue is equal to the multiplicity of zero of the function. For clarity, the results of the work are presented through the characteristic determinant of the operator and numerical series that describe the behavior of the regularized trace. Using the methods of function theory and analytical series, the first regularized trace is calculated, which is an important step in studying the spectral characteristics of an operator on graphs. The article is of interest to specialists in the theory of spectral operators and differential equations on graphs, as well as to researchers involved in calculating operator traces and analyzing their asymptotic properties.

About the Authors

Z. Z. Satpayeva
S. Amanzholov East Kazakhstan University
Kazakhstan

 PhD student 

 Ust-Kamenogorsk 



B. E. Kanguzhin
Kazakh National University named after Al-Farabi
Kazakhstan

 Doctor of Physical and Mathematical Sciences, Professor 

 Almaty 



References

1. Kanguzhin B.E., Kaiyrbek Zh.A., Mustafina M.O. (2021) Recovering of the Stiffness Coefficients of the Sturm-Liouville Operator on a Star Graph from a Finite Set of its Eigenvalues. Lobachevckii Journal of Mathematics, vol. 15, no. 6, pp. 2725–2730.

2. Bondarenko N.P. (2023) Inverse problem for a differential operator on a star-shaped graph with nonlocal matching condition. Bol. Soc. Mat. Mex., vol. 29, no. 2. https://doi.org/10.1007/s40590-022-00476-x.

3. Savchuk A.M. (2000) Reguljarizovannyj sled pervogo porjadka operatora Shturma-Liuvillja s δ-potencialom. Uspehi mat. nauk, vol. 55, no. 6, pp. 155–156. [in Russian]

4. Gel'fand I.M., Levitan B.M. (1953) Ob odnom prostom tozhdestve dlja sobstvennyh znachenij differencial'nogo operatora vtorogo porjadka. Dokl. AN SSSR, vol. 88, no. 4, pp. 593–596. [in Russian]

5. Sadovnichij V.A., Podol'skij V.E. (2006) Sledy operatorov. Uspehi mat. Nauk, vol. 61, no. 5, pp. 89–156. [in Russian]

6. Najmark M.A. (2010) Linejnye differencial'nye operatory. [in Russian]

7. Nazarov A.I., Stolyarov D.M., Zatitskiy P.B. (2014) The Tamarkin equiconvergence theorem and a first-order trace formula for regular differential operators revisited. J. Spectr. Theory, vol. 4, no.2, pp. 365–389.

8. Savchuk A.M., Shkalikov A.A. (2001) Formula sleda dlja operatorov Shturma-Liuvillja s singuljarnymi potencialami. Mat. Zametki, vol. 69, no. 3, pp. 427–442. [in Russian]

9. Gal'kovskij E.D., Nazarov A.I. (2018) Obshhaja formula sledov dlja differencial'nogo operatora na otrezke pri vozmushhenii mladshego kojefficienta konechnym zarjadom. Algebra i analiz, vol. 30, no. 3, pp. 30–54. [in Russian]

10. Bellman R., Kuk K.L. (1967) Differencial'no- raznostnye uravnenija. [in Russian]

11. Kanguzhin B.E., Nurahmetov D.B., Anijarov A.A., Satpaeva Z. (2025) Reguljarizovannyj sled operatora dvukratnogo differencirovanija na graf-zvezde. Differential Equations. [in Russian]

12. Kirsten K. (2001) Spectral Functions in Mathematics and Physics. CRC Press.

13. Erdal G., Aylan C. (2021) A Second Regularized Trace Formula for a Fourth Order Differential Operator. Symmetry, no. 4, p. 629.

14. Imanbaev N.S., Sadybekov M.A. (2014) Pervyj reguljarizovannyj sled differencial'nogo operatora tipa Shturma–Liuvillja na otrezke s prokolotymi tochkami. Vestnik KazNU. Serija matematika, mehanika, informatika, no. 2, pp. 66–71. [in Russian]

15. Bondarenko N.P. (2022) Linear Differential Operators with Distribution Coefficients of Various Singularity Orders. arXiv preprint.

16. Savchuk A.M., Shkalikov A.A. (2003) Operatory Shturma–Liuvillja s potencialami-raspredelenijami. Trudy Moskovskogo matematicheskogo obshhestva, no. 64, pp. 159–212. [in Russian]

17. Kanguzhin B.E., Tokmagambetov N.E. (2013) O formule reguljarizovannogo sleda korrektno vozmushhennogo operatora Laplasa. Doklady Akademii nauk. [in Russian]

18. Fazullin Z.Ju., Murtazin H.H. (2001) Reguljarizovannyj sled dvumernogo garmonicheskogo oscilljatora. Matematicheskij sbornik, no. 2, pp. 109–138. [in Russian]

19. Sadovnichij V.A., Fazullin Z.Ju. (2005) Asimptotika sobstvennyh chisel i formula sleda vozmushhenija operatora Laplasa na sfere S². Matematicheskie zametki, no. 3, pp. 434–448. [in Russian]

20. Fazullin Z.Ju., Murtazin H.H. (2015) Formula reguljarizovannogo sleda dlja vozmushhenij iz klassa Shatena–fon Nejmana diskretnyh operatorov. Bashkirskij universitet. [in Russian]

21. Bondarenko N.P. (2023) Regularization and inverse spectral problems for differential operators with distribution coefficients. arXiv preprint.

22. Law C.K., Pivovarchik V. (2009) Characteristic functions of quantum graphs. Journal of Physics A: mathematical and theoretical.


Review

For citations:


Satpayeva Z.Z., Kanguzhin B.E. THE REGULARIZED TRACE OF THE STURM-LIOUVILLE OPERATOR ON A STAR-GRAPH. Herald of the Kazakh-British technical university. 2025;22(1):229-238. (In Russ.) https://doi.org/10.55452/1998-6688-2025-22-1-229-238

Views: 65


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)