Preview

Herald of the Kazakh-British Technical University

Advanced search

STABILITY CONDITION OF FINITE DIFFERENCE SCHEMES FOR PARABOLIC AND HYPERBOLIC EQUATIONS: A COMPARISON WITH FINITE VOLUME METHODS FOR FRACTIONAL-ORDER DIFFUSION

https://doi.org/10.55452/1998-6688-2025-22-1-184-196

Abstract

This paper compares the finite difference and finite volume methods for solving time-fractional diffusion equations. These methods are widely known for diffusion equations with integer order, but their effectiveness for time-fractional diffusion equations has not been sufficiently studied. The definition of the Grunwald-Letnikov fractional derivative is used to approximate the equation. An explicit difference scheme for the finite difference method is obtained and a stability condition for the fractional time order difference scheme is derived, which is also a generalisation for parabolic and hyperbolic type equations, which was previously unknown for schemes with a fractional time order. An explicit discrete form for solving subdiffusion equations in two-dimensional space with fractional time order by the finite volume method is presented. Numerical results show that the finite difference method demonstrates high accuracy, while the finite volume method is better suited for complex geometries. These findings provide insights for future developments in anomalous diffusion modeling.

About the Authors

A. A. Issakhov
Kazakh-British Technical University
Kazakhstan

 PhD, Professor 

 Almaty 



A. B. Abylkassymova
Kazakh-British Technical University
Kazakhstan

 PhD, Associate Professor 

 Almaty 



R. E. Zhailybaev
Kazakh-British Technical University
Kazakhstan

 undergraduate student 

 Almaty 



S. L. Yun
Kazakh-British Technical University
Kazakhstan

 undergraduate student 

 Almaty 



References

1. Westerlund S. Dead matter has memory! Physica Scripta, 1991, vol. 43, pp. 174–179.

2. Westerlund Causality S. Report 940426, University of Kalmar, 1994.

3. Caputo M. Free modes splitting and alterations of electrochemically polarizable media. Rend. Fis. Acc. Lincei, 1991, ser. 9–4, pp. 89–98.

4. El-Nabulsi A.R. Cosmology with Fractional Action Principle. Romanian Reports in Physics, 2007, vol. 59, no. 3, pp. 763–771.

5. Micolta-Riascos B., Millano A.D., Leon G., Erices C. and A. Paliathanasis. Revisiting Fractional Cosmology, Fractal and Fractional, 2023, vol. 7, no. 2, p. 149. https://doi.org/10.3390/fractalfract7020149

6. Carpintery A. and Mainardi F. Fractal and Fractional Calculus in Continuum Mechanics. CISM, 1997.

7. Benson D., Meerschaert M. and J. Revielle. Fractional calculus in hydrologic modeling: A numerical perspective. Advances in water resources, 2013, vol. 51, pp. 479–497. https://doi.org/10.1016/j.advwatres.2012.04.005

8. Zhang Y., Sun H.G., Stowell H.H., Zayernouri M. and S.E. Hansen. A review of applications of fractional calculus in Earth system dynamics. Chaos, 2017 Solitons & Fractals, vol.102, pp. 29–46. https://doi.org/10.1016/j.chaos.2017.03.051

9. Tarasov V.E. Continuous Medium Model for Fractal Media. Physics Letters A, 2005, no. 336, pp. 167–174. https://doi.org/10.1016/j.physleta.2005.01.024

10. Usman M., Makinde O.D., Khan Z.H, Ahmad R. and W.A. Khan. Applications of fractional calculus to thermodynamics analysis of hydromagnetic convection in a channel. International Communications in Heat and Mass Transfer, 2023, no. 149, p. 107105. https://doi.org/10.1016/j.icheatmasstransfer.2023.107105

11. Aleroev T.S., Aleroeva H.T., Huang J.F., Nie N.M., Tang Y.F. and S.Y. Zhang. Features of Inflow of a Liquid to a Chink in the Cracked Deformable Layer, IJMSSC, 2010, vol. 1, no. 3, pp. 333–347. https://doi.org/10.1142/S1793962310000195

12. Ninghu S. Fractional Calculus for Hydrology, Soil Science and Geomechanics, 2020. https://doi.org/10.1201/9781351032421

13. Park H.W., Choe J. and J.M. Kang. Pressure Behaviour of Transport in Fractal Porous Media Using a Fractional Calculus Approach. Energy Sources, 2000, no. 22, pp. 881–890. https://doi.org/10.1080/00908310051128237

14. Kulish V.V. and J.L. Lage. Application of Fractional Calculus to Fluid Mechanics. J. of Fluids Eng., 2002, no.124, pp. 803–805. https://doi.org/10.1115/1.1478062

15. Varieschi G. Applications of Fractional Calculus to Newtonian Mechanics. Journal of Applied Mathematics and Physics, 2018, no. 6, pp. 1247–1257. https://doi.org/10.4236/jamp.2018.66105

16. Tarasov V.E. Fractional Hydrodynamic Equations for Fractal Media. Annals of Physics, 2005, vol. 318, no. 2, pp. 286–307. https://doi.org/10.1016/j.aop.2005.01.004

17. Lundstrom B.N. and T.J. Richner. Neural adaptation and fractional dynamics as a window to underlying neural excitability. PLoS Comput. Biol, 2023, no.19. https://doi.org/10.1371/journal.pcbi.1011220

18. Harjule P. and M.K. Bansal. Fractional Order Models for Viscoelasticity in Lung Tissues with Power, Exponential and Mittag-Leffler Memories. International Journal of Applied and Computational Mathematics, 2020, no. 6. https://doi.org/10.1007/s40819-020-00872-9

19. Soares J., Jarosz S. and F. Costa Fractional growth models: Malthus and Verhulst. C.Q.D. Revista Eletrônica Paulista de Matemática, 2022, no. 22, pp. 162–177. https://doi.org/10.21167/cqdv22n22022162177

20. Xin Shen Applications of Fractional Calculus in Chemical Engineering, 2018, Ottawa, Canada.

21. Sugandha Arora, Trilok Mathur, Shivi Agarwal, Kamlesh Tiwari and Phalguni Gupta Applications of fractional calculus in computer vision: A survey. Neurocomputing, 2022, no. 489, pp. 407–428. https://doi.org/10.1016/j.neucom.2021.10.122

22. Ting Chen and Derong Wang Combined application of blockchain technology in fractional calculus model of supply chain financial system. Chaos, Solitons & Fractals, 2020, no.131, p. 109461. https://doi.org/10.1016/j.chaos.2019.109461

23. Alinei-Poiana T., Dulf E.H. and L. Kovacs. Fractional calculus in mathematical oncology. Scientific Reports, 2023, no.13. https://doi.org/10.1038/s41598-023-37196-9

24. Tarasov V.E. Fractional dynamics: Applications of Fractional Calculus to dynamics of Particles. Fields and Media. Berlin, Springer, 2010.

25. Shkhanukov M.Kh. O shodimosti raznostnyh shem dlja differencial'nyh uravnenij s drobnoj proizvodnoj [On convergence of difference schemes for differential equations with fractional derivative], Reports of the Academy of Sciences, 1996, vol. 348, no. 6, pp. 746–748 [in Russian]

26. Alikhanov A.A. A new difference scheme for the time fractional diffusion equation. J. Comput. Phys., 2015, vol. 280, pp. 424–438. https://doi.org/10.1016/j.jcp.2014.09.031

27. Hendy A.S., Pimenov V.G. and J.E. Macias-Dias. Convergence and stability estimates in difference setting for time-fractional parabolic equations with functional delay. Numerical Methods for Partial Differential Equations, 2020, vol. 36, no. 1, pp. 118–132.

28. Li D., Liao H., Sun W., Wang J. and J. Zhang. Analysis of L1-Galerkin FEMs for Time-Fractional Nonlinear Parabolic Problems. Commun. Comput. Phys., 2018, vol. 24, no. 1, pp. 86–103. https://doi.org/10.4208/cicp.OA-2017-0080

29. Li L., Zhou B., Chen X. and Z. Wang. Convergence and stability of compact finite difference method for nonlinear time fractional reaction-diffusion equations with delay. Appl. Math. and Comput., 2018, no. 337, pp. 144–152. https://doi.org/10.1016/j.amc.2018.04.057

30. Liu F., Zhuang P., Anh V., Turner I. and K. Burrage. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput., 2007, no. 191, pp. 12–20. https://doi.org/10.1016/j.amc.2006.08.162

31. Pimenov V.G. and A.S. Hendy. A fractional analogue of Crank-Nicholson method for the two sided space fractional partial equation with functional delay. Ural Mathematical Journal, 2016, vol. 2, no. 1, pp. 48–57. https://doi.org/10.15826/umj.2016.1.005.

32. Gharehbaghi A., Kaya B. and G. Tayfur. Comparative Analysis of Numerical Solutions of AdvectionDiffusion Equation // Cumhuriyet science journal, 2017, no. 38, pp. 49–63. https://doi.org/10.17776/csj.53808.

33. Faure S., Pham D. and R. Temam. Comparison of finite volume and finite difference methods and applications. Analysis and Applications, 2006, vol. 4, no. 2, pp. 163–208. https://doi.org/10.1142/S0219530506000723.

34. Ali A.H., Jaber A., Yaseen M., Rasheed M., Bazighifan O. and T. Nofal. A Comparison of Finite Difference and Finite Volume Methods with Numerical Simulations: the Burgers Equation Model. Complexity, 2022.

35. Sun Y., and T. Zhang. A finite difference/finite volume method for solving the fractional diffusion wave equation. Journal of the Korean Mathematical Society, 2021, no. 58, pp. 553–569. https://doi.org/10.4134/JKMS.j190423.

36. Potapov A.A. Ocherki po razvitiju drobnogo ischislenija v rabotah A.V. Letnikova [Essays on the development of fractional calculus in the works of A.V. Letnikov], Moscow, RANSIT, 2012. [in Russian]

37. Lyakhov L.N. and E.L. Shishkina. Drobnye proizvodnye i integraly i ih prilozhenija [Fractional derivatives and integrals and their applications], 2011. [in Russian].

38. Meerschaert M.M. and C. Tadjeran Finite difference approximations for fractional advectiondispersion flow equations. Journal of Computational and Applied Mathematics, 2004, vol. 172, no. 1, pp. 65–77. https://doi.org/10.1016/j.cam.2004.01.033.

39. Uchaikin V.V. Metod drobnyh proizvodnyh [Method of fractional derivatives]. Ulyanovsk, Artishok, 2008. [in Russian].

40. Podlubny I. Fractional Differential Equations. Mathematics in Science and Engineering 198. Academic Press, San Diego, 1999.

41. Zhang T. and Q. Guo. The finite difference/finite volume method for solving the fractional diffusion equation. Journal of Computational Physics, 2018, no. 375, pp. 120–134. https://doi.org/10.1016/j.jcp.2018.08.033.

42. Wang F., Hou E., Ahmad I., Ahmad H. and Y. Gu. An Efficient Meshless Method for Hyperbolic Telegraph Equations in (1+1) Dimensions. Computer Modeling in Engineering & Sciences,128. https://doi.org/10.32604/cmes.2021.014739.


Review

For citations:


Issakhov A.A., Abylkassymova A.B., Zhailybaev R.E., Yun S.L. STABILITY CONDITION OF FINITE DIFFERENCE SCHEMES FOR PARABOLIC AND HYPERBOLIC EQUATIONS: A COMPARISON WITH FINITE VOLUME METHODS FOR FRACTIONAL-ORDER DIFFUSION. Herald of the Kazakh-British Technical University. 2025;22(1):184-196. https://doi.org/10.55452/1998-6688-2025-22-1-184-196

Views: 248


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)