CONSTRUCTION OF NORMAL SOLUTIONS FOR INHOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS WITH IRREGULAR SINGULARITIES
https://doi.org/10.55452/1998-6688-2025-22-1-163-172
Abstract
The problem of constructing a normal solution to inhomogeneous systems of second-order partial differential equations using the Frobenus-Latysheva method in the neighborhood of an irregular singular point is considered. The compatibility conditions for the considered inhomogeneous system of partial differential equations are shown and an algorithm for constructing normal solutions in the vicinity of a point at infinity is created. A theorem on the structure of the general solution of inhomogeneous systems of second-order partial differential equations is proved and a “resonance” system is studied, which arises if the particular solution of the corresponding homogeneous system coincides on the right side of the inhomogeneous system. A specific example shows how to construct a particular solution to a non-homogeneous system of partial differential equations.
About the Authors
M. Zh. TalipovaKazakhstan
Cand. Phys.-Math.Sc., Associate Professor
Aktobe
A. U. Bekbauova
Kazakhstan
Cand. Phys.-Math.Sc., Associate Professor
Aktobe
References
1. Ajns Je.L. (2005) Obyknovennye differencial'nye uravnenija, p. 636. [in Russian]
2. Poincare H. (1884) Sur les èquations linèaires aux differentielles ordinaries et aux differences fines. Amer J.Math., no. 7, pp. 203–258.
3. Thome L.W. (1873) Sur Theorie der linearen Differential gleichungen. J. für M., vol. 75, pp. 265–291.
4. Frobenius G. (1873) Über die Integration der linearen Differential gleichungen durch Reihen. Journal für die reine und angewandte Math., vol. 76, pp. 214–235.
5. Puankare A. (1971) Izbrannye metody. Novye metody nebesnoj mehaniki, p. 771. [in Russian]
6. Trikomi F. (1971) Differencial'nye uravnenija, p. 351. [in Russian]
7. Suetin P.K. (1988) Ortogonal'nye mnogochleny po dvum peremennym, p. 384. [in Russian]
8. Golubev V.V. (1950) Lekcii po analiticheskoj teorii differencial'nyh uravnenij, p. 435. [in Russian]
9. Latysheva K.Ja., Tereshhenko N.I., Orel G.S. (1974) Normal'no-reguljarnye reshenija i ih prilozhenija, p. 136. [in Russian]
10. Kornev B.G. (1971) Vvedenie v teoriju besselevyh funkcij, p. 287. [in Russian]
11. Tasmambetov Zh.N. (2015) Postroenie normal'nyh i normal'no-reguljarnyh reshenij special'nyh system differencial'nyh uravnenij v chastnyh proizvodnyh vtorogo porjadka, p. 464. [in Russian]
12. Tasmambetov Z.N., Talipova M.Z. (2017) Construction of normal-regular decisions of Bessel typed special system. AIP Conference Proceedings, vol. 1880. DOI: 10.1063/1.5000629.
13. Tasmambetov Zh.N., Rajabov N., Ubayeva Zh.K. (2022) Features of Constructing a Solution Heterogeneous Equation and Clausen-Type Systems. Mathematical Modelling of Engineering Problems, vol. 9, no. 4, pp. 906–918.
14. Issenova A.A., Tasmambetov Z.N., Talipova M.Z. (2022) Construction of Solutions Hypergeometric System of Horn Type in the Form of Laguerre Polynomials. Lobachevskii Journal of Mathematics, vol. 43, no. 11, pp. 3167–3173.
15. Tasmambetov Z.N., Ubayeva Z.K. (2022) Exceptions of Formulating the Normal-Regular Solutions of Confluent Hypergeometric Systems Obtained from the Lauricella System. Lobachevskii Journal of Mathematics, vol. 43, no. 8, pp. 2309–2321.
16. Tasmambetov Zh.N., Ubayeva Zh.K. (2020) Solution of inhomogeneous systems for differential equations in private derivatives of the third order. Bulletin of the Karaganda University. Mathematics Series, vol. 98, no. 2, pp. 153–164.
17. Ubayeva Zh.K., Tasmambetov Zh.N., Rajabov N. (2022) Features of Constructing a Solution Heterogeneous Equation and Clausen-Type Systems. Mathematical Modelling of Engineering Problems, no. 4, pp. 906–918.
18. Hasanov A., Yuldashev T.K. (2022) Analytic continuation formulas for the hypergeometric functions in three variables of second order. Lobachevskii J. Math., vol. 43, pp. 386–393.
19. Hasanov A. and Ruzhansky M. Hypergeometric Expansions of Solutions of the Degenerating Model Parabolic Equations of the Third Order. Lobachevskii J. of Mathematics, no. 41(1), pp. 27–31.
20. Ergashev T.G., Hasanov A., Yuldashev T.K. (2024) Euler-type integral representations for the Kampé de Fériet functions. Journal of Mathematical Sciences (United States), vol. 279, no. 1, pp. 22–36.
Review
For citations:
Talipova M.Zh., Bekbauova A.U. CONSTRUCTION OF NORMAL SOLUTIONS FOR INHOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS WITH IRREGULAR SINGULARITIES. Herald of the Kazakh-British technical university. 2025;22(1):163-172. (In Kazakh) https://doi.org/10.55452/1998-6688-2025-22-1-163-172