Preview

Herald of the Kazakh-British Technical University

Advanced search

SPATIOTEMPORAL ANALYTICS OF URBAN POPULATION USING HEAT MAPS

https://doi.org/10.55452/1998-6688-2025-22-1-150-162

Abstract

Spatiotemporal analytics of population movement and density data plays a crucial role in building a «smart city», providing a basis for optimizing urban planning, improving transport systems, increasing public safety, environmental monitoring, developing digital services and urban analytics. This article presents the results of a study on spatiotemporal patterns of distribution and concentration of the population of Almaty using the method of dynamic heat maps. To build a complete picture of the movement, density and activity of the population, open geographic data from OpenStreetMap (OSM) and aggregated data from a mobile operator were used. Analysis of the load on urban quadrants of 500×500 meters based on OSM made it possible to assess the key patterns of change in population density depending on the time of day. Visualization of spatiotemporal data is implemented using the Python Folium library, which ensured the creation of clear interactive maps. The scientific novelty of the study lies in the study of urban processes in Almaty based on integrated data from different sources reflecting the spatiotemporal features of the dynamics of the urban population. The results obtained demonstrate clear patterns of population concentration that can be used to more accurately forecast and plan the allocation of resources and urban infrastructure.

About the Authors

G. U. Bektemyssova
International InformationTechnology University
Kazakhstan

 Candidate of Technical Sciences 

 Almaty 



A. N. Moldagulova
Kazakh National Research Technical University named after K.I. Satbayev
Kazakhstan

 Candidate of Physical and Mathematical Sciences 

 Almaty 



G. T. Shaikemelev
International InformationTechnology University
Kazakhstan

 PhD student 

 Almaty 



S. S. Omarov
International InformationTechnology University
Kazakhstan

 PhD student 

 Almaty 



S. Nuralykyzy
Kazakh National Research Technical University named after K.I. Satbayev
Kazakhstan

 PhD student 

 Almaty 



References

1. Zanella A., Bui N., Castellani A., Vangelista L., & Zorzi, M. Internet of Things for Smart Cities. IEEE Internet of Things Journal, 2014. https://doi.org/10.1109/JIOT.2014.2306328.

2. Alami A., Kusyk J., & Lefebvre E. Artificial Intelligence and Smart Cities: A Comprehensive Review. 9th IEEE International Conference on Dependable Systems, Services and Technologies, 2019. https://doi.org/10.1109/DESSERT.2019.8750074.

3. Al-Fuqaha A., Guizani M., Mohammadi M., Aledhari M., & Ayyash M. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Communications Surveys & Tutorials, 2015. https://doi.org/10.1109/COMST.2015.2444095.

4. Caragliu A., Del Bo C., & Nijkamp P. Smart Cities in Europe. Journal of Urban Technology, 2011. https://doi.org/10.1080/10630732.2011.601117.

5. Anthopoulos L.G. Understanding the smart city domain: A literature review. Smart Cities, 2017. https://doi.org/10.1016/j.scs.2017.11.006.

6. Mendybayev T. and Mendybayev A. Assessing Urbanization Levels Using GeoData: Implications for Kazakhstan Regional Development Planning, 2024 IEEE 4th International Conference on Smart Information Systems and Technologies (SIST), Astana, Kazakhstan, 2024, pp. 222–227. https://doi.org/10.1109/SIST61555.2024.10629546.

7. Singh A. and Kumar M. Data Urbanity: Smart City Evolution Through IoT and Data Science, 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA), Bengaluru, India, 2023, pp. 63–71. https://doi.org/ 10.1109/ICIMIA60377.2023.10426499.

8. Ramanathan S., Syed K. and Chavan T. Data-driven visual analytics of Human Mobility data and green cover using Image Processing for Smart Cities. 2023 3rd International Conference on Intelligent Technologies (CONIT), Hubli, India, 2023, pp. 1–8. https://doi.org/10.1109/CONIT59222.2023.10205381.

9. Mutzu Martis M., Garau C. A Literature Review of the Urban Heat Island (UHI) Phenomenon Connected with Smart Cities Paradigm. In: Gervasi O., Murgante B., Garau C., Taniar D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol. 14823. Springer, Cham. https://doi.org/10.1007/978-3-031-65329-2_1

10. Aziz N.S.A., Azri S., Ujang U., Darwin N., Choon T.L. Analyzing Urban Spatial Distribution in 2D and 3D for Smart City Planning and Zoning. In: Yadava, R.N., Ujang, M.U. (eds) Advances in Geoinformatics Technologies . Earth and Environmental Sciences Library. Springer, Cham, 2024. https://doi.org/10.1007/978-3-031-50848-6_18.

11. Orishimo I. An Approach to Urban Dynamics. Geographical Analysis, 2010, vol. 19, pp. 200–210. https://doi.org/10.1111/J.1538-4632.1987.TB00125.X.

12. Wang J., Wu J., Wang Z., Gao F., & Xiong Z. Understanding Urban Dynamics via ContextAware Tensor Factorization with Neighboring Regularization. IEEE Transactions on Knowledge and Data Engineering, 2019, vol. 32, pp. 2269–2283. https://doi.org/10.1109/TKDE.2019.2915231.

13. Reia S., Rao P., Barthelemy M., & Ukkusuri S. Spatial structure of city population growth. Nature Communications, 2022, vol. 13. https://doi.org/10.1038/s41467-022-33527-y.

14. Yang X., Zhao Z., Shi C., Luo L., & Tu W. The Dynamic Heterogeneous Relationship between Urban Population Distribution and Built Environment in Xi’an, China: A Case Study. Remote. Sens., 2023, 15, 2257. https://doi.org/10.3390/rs15092257.

15. Scheuer S., Haase D., & Volk M. On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City. PLoS ONE, 2016, 11. https://doi.org/10.1371/journal.pone.0160471.

16. Anees M., Mann D., Sharma M., Banzhaf E., & Joshi P. Assessment of Urban Dynamics to Understand Spatiotemporal Differentiation at Various Scales Using Remote Sensing and Geospatial Tools. Remote. Sens., 2020, vol.12, p. 1306. https://doi.org/10.3390/rs12081306.

17. Leibovici D., & Birkin M. On Geocomputational Determinants of Entropic Variations for Urban Dynamics Studies. Geographical Analysis, 2015, vol. 47, pp. 193–218. https://doi.org/10.1111/GEAN.12050.

18. Agunbiade M., Rajabifard A., & Bennett R. The dynamics of city growth and the impact on urban land policies in developing countries. International Journal of Urban Sustainable Development, 2012, vol. 4, pp. 146–165. https://doi.org/10.1080/19463138.2012.694818.

19. Feng J., & Chen Y. Modeling Urban Growth and Socio-Spatial Dynamics of Hangzhou, China: 1964–2010. Sustainability, 2021. https://doi.org/10.3390/SU13020463.

20. Irwin E., Jayaprakash C., & Munroe D. Towards a comprehensive framework for modeling urban spatial dynamics. Landscape Ecology, 2009, vol. 24, pp. 1223–1236. https://doi.org/10.1007/s10980-009-9353-9.

21. Batty M. The new science of cities. MIT Press, 2018, 520 p.

22. Bektemyssova G., Moldagulova A., Shaikemelov G., Omarov S. and Nuralykyzy S. Research on spatial aggregation patterns of urban population in Almaty City based on heat map, 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT), Vallette, Malta, 2024, pp. 2194–2198, https://doi.org/ 10.1109/CoDIT62066.2024.10708175.

23.


Review

For citations:


Bektemyssova G.U., Moldagulova A.N., Shaikemelev G.T., Omarov S.S., Nuralykyzy S. SPATIOTEMPORAL ANALYTICS OF URBAN POPULATION USING HEAT MAPS. Herald of the Kazakh-British Technical University. 2025;22(1):150-162. (In Russ.) https://doi.org/10.55452/1998-6688-2025-22-1-150-162

Views: 181


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)