PLASMON RESONANCE IN THIN ZnO FILMS WITH NANOPARTICLES OF NOBLE METALS
https://doi.org/10.55452/1998-6688-2024-21-4-210-218
Abstract
The main disadvantage of traditional metal oxides, including zinc oxide (ZnO), is poor absorption of light in the visible range. Among the many ways to solve this problem, the creation of their composition with noble metal nanoparticles (NPs) is the most interesting from both practical and theoretical points of view. Due to the effect of localized surface plasmon resonance (LSPR), characterized by a light absorption band in the visible range, the functionality of oxide semiconductors can be significantly improved. This work presents the results of preparation of composite films based on ZnO with nanoparticles of noble metals (silver Ag, gold Au and their alloy AgAu) by magnetron sputtering, as well as the analysis of the LSPR effect in these composites. In ZnO:AgNPs films, the LSPR absorption was observed at 475 nm, while for ZnO:AuNPs at 535 nm. The AuAg alloy nanoparticles exhibit a maximum in the intermediate interval of these two values, i.e., in the region of 508 nm. The obtained data indicate that by controlling the composition of noble metal nanoparticles it is possible to effectively control the light absorption band in the visible range.
About the Authors
A. B. KoshanovaKazakhstan
doctoral student
Almaty
R. R. Nemkayeva
Kazakhstan
Master of Phys.-Tech Sciences
Almaty
N. G. Guseinov
Kazakhstan
Master of Phys.-Tech Sciences
Almaty
A. A. Markhabayeva
Kazakhstan
PhD
Almaty
Ye. S. Mukhametkarimov
Kazakhstan
PhD, Associate Professor
Almaty
References
1. Khurana K., Jaggi N. Localized Surface Plasmonic Properties of Au and Ag Nanoparticles for Sensors: A Review. Plasmonics, 2021, no.16, pp. 981–999.
2. Guglielmelli A., Pierini F., Tabiryan N., Umeton C., Bunning T.J., De Sio L. Thermoplasmonics with Gold Nanoparticles: A New Weapon in Modern Optics and Biomedicine. Adv. Photonics Res. 2021, no. 2, p. 2000198.
3. F.Y. Alzoubi, Ahmad A. Ahmad, Ihsan A. Aljarrah, A.B. Migdadi, and Qais M. Al-Bataineh. Localize surface plasmon resonance of silver nanoparticles using Mie theory. J. Mater Sci: Mater Electron, 2023, no. 34, p. 2128.
4. Koichi Okamoto, Daisuke Tanaka, Tetsuya Matsuyama, Kenji Wada, Yusuke Arima and Kaoru Tamada. Design and Optimization of Silver Nanostructured Arrays in Plasmonic Metamaterials for Sensitive Imaging Applications. J. Photonics, 2024, vol. 11, no. 4, p. 292.
5. Novikov S.M., Popok V.N., Fiutowski J., Arsenin A.V. and Volkov V.S. Plasmonic properties of nanostructured graphene with silver nanoparticles. J. Phys.: Conf. Ser., 2020, no. 1461, p. 012119.
6. Baffou G., Cichos F., Quidant R. Applications and Challenges of Thermoplasmonics. Nat. Mater., 2020, no. 19, pp. 946–958.
7. Chehadi Z., Girardon J.S., Capron M., Dumeignil F., Jradi S. Thermoplasmonic-Induced Energy-Efficient Catalytic Oxidation of Glycerol over Gold Supported Catalysts Using Visible Light at Ambient Temperature. Appl. Catal. A Gen., 2019, no. 572, pp. 9–14.
8. Brognara A., Bricchi B.R., William L., Brinza O., Konstantakopoulou M., Bassi A.L., Ghidelli M., Lidgi-Guigui N. New Mechanism for Long Photo-Induced Enhanced Raman Spectroscopy in Au Nanoparticles Embedded in TiO2. Small, 2022, no. 18, p. 2201088.
9. Ye J., Arul R., Nieuwoudt M.K., Dong J., Zhang T., Dai L., Greenham N.C., Rao A., Hoye R.L.Z., Gao W. et al. Under-standing the Chemical Mechanism behind Photoinduced Enhanced Raman Spectroscopy. J. Phys. Chem. Lett., 2023, no. 14, pp. 4607–4616.
10. Lyu P., Espinoza R., Nguyen S.C. Photocatalysis of Metallic Nanoparticles: Interband vs Intraband Induced Mechanisms. J. Phys. Chem. C, 2023, vol. 127, no. 32, pp. 15685–15698.
11. Rituraj Borah, Rajeshreddy Ninakanti, Sara Bals & Sammy W. Verbruggen. Plasmon resonance of gold and silver nanoparticle arrays in the Kretschmann (attenuated total reflectance) vs. direct incidence configuration. J. Scientific Reports, 2022, vol. 12, Article number: 15738.
12. Alexis Loiseau, Victoire Asila, Gabriel Boitel-Aullen, Mylan Lam, Michèle Salmain and Souhir Boujday. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. J. Biosensors (Basel), 2019 Jun., vol. 9, no. 2, p. 78.
13. Karunakaran C., Rajeswari V., Gomathisankar P. Combustion synthesis of ZnO and Ag-doped ZnO and their bactericidal and photocatalytic activities. J. Superlattices and Microstructures, 2011, vol. 50, Issue 3, pp. 234–241.
14. Linhua Xu, Gaige Zheng, Lilong Zhao, Shixin Pei. Two different mechanisms on UV emission enhancement in Ag-doped ZnO thin films. J. Journal of Luminescence, 2015, vol. 158, pp. 396–400.
15. Zhuang T.-T., Liu Y., Li Y., Sun M., Sun Z.-J., Du P.-W., Jiang J., Yu S.-H. 1D Colloidal Hetero-Nanomaterials with Programmed Semiconductor Morphology and Metal Location for Enhancing Solar Energy Conversion. J. Small., 2017, no. 13, p. 1602629.
16. Mwankemwa B.S., Nambala F.J., Kyeyune F., Hlatshwayo T.T., Nel J.M., Diale M. Materials Science in Semiconductor Processing, 2017, no. 71, pp. 209–216.
17. Prikhodko O., Dosseke U., Nemkayeva R., Rofman O., Guseinov N., Mukhametkarimov Ye. Localized surface plasmon resonance phenomenon in Ag/Au-WO3-x nanocomposite thin films. J. Thin Solid Films, 2022, no. 757, p. 139387.
18. Asaad A. Kamil, Nabeel A. Bakr, Mubarak T.H., Al-Zanganawee J. Effect of Au and Ag nanoparticles addition on the morphological, structural and optical properties of ZnO thin films deposited by sol-gel method. J. Journal of Ovonic Research, 2022, vol. 18, no. 3, pp. 431–442.
19. Ziaul Raza Khan, Mohd Shoeb Khan, Mohammad Zulfequar, Mohd Shahid Khan. Optical and Structural Properties of ZnO Thin Films Fabricated by Sol-Gel Method. J. Materials Sciences and Applications, 2011, no. 2, pp. 340–345.
20. Kumar P., Som S., Pandey M. K, Das S, Chanda A, Singh J. Journal of Alloys and Compounds 744, 2018, pp. 64–74.
21. Prabhu S., Pudukudy M., Sohila S., Harish S., Navaneethan M., Navaneethan D., Ramesh R., Hayakawa Y., Optical Materials, 2018, no. 79, pp. 186–195.
22. Changhwan Lee, Yujin Park and Jeong Young Park. Hot electrons generated by intraband and interband transition detected using a plasmonic Cu/TiO2 nanodiode. RSC Adv., 2019, no. 9, pp. 18371–18376.
23. Siti Huzaimah Ributa, Che Azurahanim Che Abdullaha, Mohd Zaki Mohammad Yusof. Investigations of structural and optical properties of zinc oxide thin films growth on various substrates. J. Results in Physics, 2019, vol. 13, p. 102146.
24. Quinten M. Optical Properties of Nanoparticle Systems: Mie and Beyond, November 2010, p. 502. ISBN: 978-3-527-63315-9.
25. Shaheen Husain, Aditya Nandi, Faizan Zarreen Simnani, Utsa Saha, Aishee Ghosh, Adrija Sinha, Aarya Sahay, Shailesh Kumar Samal, Pritam Kumar Panda and Suresh K. Verma. Emerging Trends in Advanced Translational Applications of Silver Nanoparticles: A Progressing Dawn of Nanotechnology. J. Funct. Biomater., 2023, 14, 47.
26. Takeo Tomiyama, Ikuo Mukai, Hiroshi Yamazaki and Yoshihiko Takeda. Optical properties of silver nanowire/polymer composite films: absorption, scattering and color difference. J. Optical Materials Express, 2020, vol. 10, Issue 12, pp. 3202–3214.
Review
For citations:
Koshanova A.B., Nemkayeva R.R., Guseinov N.G., Markhabayeva A.A., Mukhametkarimov Ye.S. PLASMON RESONANCE IN THIN ZnO FILMS WITH NANOPARTICLES OF NOBLE METALS. Herald of the Kazakh-British technical university. 2024;21(4):210-218. (In Russ.) https://doi.org/10.55452/1998-6688-2024-21-4-210-218