Preview

Вестник Казахстанско-Британского технического университета

Расширенный поиск

ИЗГОТОВЛЕНИЕ ЭЛЕКТРОДОВ СУПЕРКОНДЕНСАТОРОВ С ВЫСОКОЙ ПРОИЗВОДИТЕЛЬНОСТЬЮ НА ОСНОВЕ ГРАФЕНОПОДОБНОГО УГЛЕРОДА, ПОЛУЧЕННОГО ИЗ ОТХОДОВ ЧАЯ

https://doi.org/10.55452/1998-6688-2024-21-4-186-195

Аннотация

В данной статье представлены результаты исследования по изготовлению активного материала для электродов суперконденсатора из графеноподобного углерода, полученного из чайных отходов карбонизацией при температуре 550°С с последующей термохимической активацией с гидроксидом калия в соотношении 1:4 при температуре 850 °С в кварцевой трубчатой печи. Структура и морфология полученного пористого графеноподобного углерода на основе чайных отходов исследована на сканирующем электронном микроскопе (СЭМ), метода Брунауэра-Эммета-Теллера (БЭТ), рентгеновской дифракции и рамановской спектроскопии. Площадь поверхности активированного пористого графеноподобного углерода из чайных отходов составила 2407 м2/г. Электрохимические и вольтамперные характеристики собранного двухслойного суперконденсатора с электродом из ГПУ-ЧО были определены с использованием потенциостат-гальваностата и исследованы на электрохимической рабочей станции Elins P-40X. Полученные результаты показали высокую удельную емкость в 182 Ф/г и кулоновскую эффективность в 96% при плотности тока 2А/г, также материал продемонстрировал низкое сопротивление переноса заряда, составляющее около 1,5 Ом, что подчеркивает эффективность использования графеноподобного углерода, полученного из отходов чая, демонстрируя его потенциал в качестве многообещающего материала для суперконденсаторов.

Об авторах

Ә. Н. Дүйсенбек
КазНИТУ им. К.И. Сатпаева; Институт проблем горения
Казахстан

PhD докторант

г. Алматы



Е. Е. Бейсенова
КазНИТУ им. К.И. Сатпаева; Институт проблем горения
Казахстан

PhD

г. Алматы



Р. Е. Бейсенов
Институт проблем горения; Казахстанско-Британский технический университет
Казахстан

PhD

г. Алматы



Қ. Асқарұлы
КазНИТУ им. К.И. Сатпаева; Казахстанско-Британский технический университет; Алматинский университет энергетики и связи им. Г. Даукеева
Казахстан

PhD

г. Алматы



Н. Г. Приходько
Институт проблем горения; Алматинский университет энергетики и связи им. Г. Даукеева
Казахстан

PhD, д.х.н., профессор

г. Алматы



А. Б. Туганбаев
Талдыкорганская акционерная транспортно-электросетевая компания
Казахстан

главный инженер

г. Талдыкорган



Список литературы

1. Frackowiak E., Abbas Q., Béguin F. Carbon/carbon supercapacitors, Journal of Energy Chemistry, 2013, vol. 22, pp. 226–240. https://doi.org/10.1016/S2095-4956(13)60028-5.

2. Gao Y., Zhou Y.S., Qian M., He X.N., Redepenning J., Goodman P., Li H.M., Jiang L., Lu Y.F. Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes, Carbon, 2013, vol. 51, pp. 52–58. https://doi.org/10.1016/j.carbon.2012.08.009.

3. Fu M., Huang J., Feng S., Zhang T., Qian P.-C., Wong W.-Y. One-step solid-state pyrolysis of bio-wastes to synthesize multi-hierarchical porous carbon for ultra-long life supercapacitors, Mater. Chem. Front., 2021, vol. 5, pp. 2320–2327. https://doi.org/10.1039/D0QM00960A.

4. Tian Q., Wang X., Xu X., Zhang M., Wang L., Zhao X., An Z., Yao H., Gao J. A novel porous carbon material made from wild rice stem and its application in supercapacitors, Materials Chemistry and Physics, 2018, vol. 213, pp. 267–276. https://doi.org/10.1016/j.matchemphys.2018.04.026.

5. Laheäär A., Przygocki P., Abbas Q., Béguin F. Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors, Electrochemistry Communications, 2015, vol. 60, pp. 21–25. https://doi.org/10.1016/j.elecom.2015.07.022.

6. Abbas A., Tabish T.A., Bull S.J., Lim T.M., Phan A.N. High yield synthesis of graphene quantum dots from biomass waste as a highly selective probe for Fe3+ sensing, Sci Rep., 2020, vol. 10, 21262. https://doi.org/10.1038/s41598-020-78070-2.

7. Wang Y., Shi Z., Huang Y., Ma Y., Wang C., Chen M., Chen Y. Supercapacitor Devices Based on Graphene Materials, J. Phys. Chem., 2009, vol. 113, pp. 13103–13107. https://doi.org/10.1021/jp902214f.

8. Yeleuov M., Daulbayev C., Taurbekov A., Abdisattar A., Ebrahim R., Kumekov S., Prikhodko N., Lesbayev B., Batyrzhan K. Synthesis of graphene-like porous carbon from biomass for electrochemical energy storage applications, Diamond and Related Materials, 2021, vol. 119, 108560. https://doi.org/10.1016/j.diamond.2021.108560.

9. Roy A., Kar S., Ghosal R., Naskar K., Bhowmick A.K. Facile Synthesis and Characterization of Few-Layer Multifunctional Graphene from Sustainable Precursors by Controlled Pyrolysis, Understanding of the Graphitization Pathway, and Its Potential Application in Polymer Nanocomposites, ACS Omega, 2021, vol. 6, pp. 1809–1822. https://doi.org/10.1021/acsomega.0c03550.

10. Prikhod’ko N.G., Mansurov Z.A., Auelkhankyzy M., Lesbaev B.T., Nazhipkyzy M., Smagulova G.T. Flame synthesis of graphene layers at low pressure, Russ. J. Phys. Chem., 2015, vol. 9, pp. 743–747. https://doi.org/10.1134/S1990793115050115.

11. Song X., Ma X., Li Y., Ding L., Jiang R. Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors, Applied Surface Science, 2019, vol. 487, pp. 189–197. https://doi.org/10.1016/j.apsusc.2019.04.277.

12. Bhoyate S., Ranaweera C.K., Zhang C., Morey T., Hyatt M., Kahol P.K., Ghimire M., Mishra S.R., Gupta R.K. Eco-Friendly and High Performance Supercapacitors for Elevated Temperature Applications Using Recycled Tea Leaves, Global Challenges, 2017, vol. 1, 1700063. https://doi.org/10.1002/gch2.201700063.

13. Adan-Mas A., Alcaraz L., Arévalo-Cid P., López-Gómez Félix. A., Montemor F. Coffee-derived activated carbon from second biowaste for supercapacitor applications, Waste Management, 2021, vol. 120, pp. 280–289. https://doi.org/10.1016/j.wasman.2020.11.043.

14. Li Y., Li Z., Xing B., Li H., Ma Z., Zhang W., Reubroycharoen P., Wang S. Green conversion of bamboo chips into high-performance phenol adsorbent and supercapacitor electrodes by simultaneous activation and nitrogen doping, Journal of Analytical and Applied Pyrolysis, 2021, vol. 155, 105072. https://doi.org/10.1016/j.jaap.2021.105072.

15. Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Communications, 2007, vol. 143, pp. 47–57. https://doi.org/10.1016/j.ssc.2007.03.052.

16. Bleu Y., Bourquard F., Loir A., Barnier V., Garrelie F., Donnet C. Raman study of the substrate influence on graphene synthesis using a solid carbon source via rapid thermal annealing, J Raman Spectrosc, 2019, vol. 50, pp. 1630–1641. https://doi.org/10.1002/jrs.5683.

17. He X., Ling P., Yu M., Wang X., Zhang X., Zheng M. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors, Electrochimica Acta, 2013, vol. 105, pp. 635–641. https://doi.org/10.1016/j.electacta.2013.05.050.

18. Han J., Xu G., Ding B., Pan J., Dou H., MacFarlane D.R. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors, J. Mater. Chem. A, 2014, vol. 2, pp. 5352–5357. https://doi.org/10.1039/C3TA15271E.

19. Kang W., Lin B., Huang G., Zhang C., Yao Y., Hou W., Xu B., Xing B. Peanut bran derived hierarchical porous carbon for supercapacitor, J Mater Sci: Mater Electron, 2018, vol. 29, pp. 6361–6368. https://doi.org/10.1007/s10854-018-8615-1.

20. Hao X., Wang J., Ding B., Wang Y., Chang Z., Dou H., Zhang X. Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors, Journal of Power Sources, 2017, vol. 352, pp. 34–41. https://doi.org/10.1016/j.jpowsour.2017.03.088.

21. Sun J., Niu J., Liu M., Ji J., Dou M., Wang F. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors, Applied Surface Science, 2018, vol. 427, pp. 807–813. https://doi.org/10.1016/j.apsusc.2017.07.220.

22. Peng C., Yan X., Wang R., Lang J., Ou Y., Xue Q. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes, Electrochimica Acta, 2013, vol. 87, pp. 401–408. https://doi.org/10.1016/j.electacta.2012.09.082.

23. Ratnaji T., L. John Kennedy. Hierarchical porous carbon derived from tea waste for energy storage applications: Waste to worth, Diamond & Related Materials, 2020. https://doi.org/10.1016/j.diamond.2020.108100.


Рецензия

Для цитирования:


Дүйсенбек Ә.Н., Бейсенова Е.Е., Бейсенов Р.Е., Асқарұлы Қ., Приходько Н.Г., Туганбаев А.Б. ИЗГОТОВЛЕНИЕ ЭЛЕКТРОДОВ СУПЕРКОНДЕНСАТОРОВ С ВЫСОКОЙ ПРОИЗВОДИТЕЛЬНОСТЬЮ НА ОСНОВЕ ГРАФЕНОПОДОБНОГО УГЛЕРОДА, ПОЛУЧЕННОГО ИЗ ОТХОДОВ ЧАЯ. Вестник Казахстанско-Британского технического университета. 2024;21(4):186-195. https://doi.org/10.55452/1998-6688-2024-21-4-186-195

For citation:


Duisenbek A.N., Beissenova E.E., Beissenov R.E., Askaruly K., Prikhodko N.G., Tuganbaev А.B. PRODUCTION OF HIGH-PERFORMANCE SUPERCAPACITOR ELECTRODES BASED ON GRAPHENE-LIKE CARBON OBTAINED FROM TEA WASTE. Herald of the Kazakh-British technical university. 2024;21(4):186-195. (In Russ.) https://doi.org/10.55452/1998-6688-2024-21-4-186-195

Просмотров: 137


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)