PRODUCTION OF HIGH-PERFORMANCE SUPERCAPACITOR ELECTRODES BASED ON GRAPHENE-LIKE CARBON OBTAINED FROM TEA WASTE
https://doi.org/10.55452/1998-6688-2024-21-4-186-195
Abstract
This article presents the results of a study on the production of active material for supercapacitor electrodes from graphene-like carbon obtained from tea waste, carbonization at a temperature of 550°C, followed by thermochemical activation using potassium hydroxide in a ratio of 1:4 at a temperature of 850°C in a quartz tube furnace. The structure and morphology of the resulting porous graphene-like carbon based on tea waste were investigated using scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), X-ray diffraction, and Raman spectroscopy. The surface area of activated porous graphene-like carbon from tea waste was 2407 m2/g. Electrochemical characterization of the assembled supercapacitor using GLC-TW was performed on an Elins P-40X electrochemical workstation and showed high specific capacitance values of 182 F/g, as well as a Coulombic efficiency of 96% at a current density of 1 A/g and the material also demonstrated a low charge transfer resistance of about 1.5 Ohms. These results highlight the effectiveness of using graphene-like carbon derived from tea waste, demonstrating its potential as a promising material for supercapacitors.
About the Authors
A. N. DuisenbekKazakhstan
PhD student
Almaty
E. E. Beissenova
Kazakhstan
PhD
Almaty
R. E. Beissenov
Kazakhstan
PhD
Almaty
K. Askaruly
Kazakhstan
PhD
Almaty
N. G. Prikhodko
Kazakhstan
PhD, Doctor of Chemical Sciences, Professor
Almaty
А. B. Tuganbaev
Kazakhstan
main engineer
Taldykorgan
References
1. Frackowiak E., Abbas Q., Béguin F. Carbon/carbon supercapacitors, Journal of Energy Chemistry, 2013, vol. 22, pp. 226–240. https://doi.org/10.1016/S2095-4956(13)60028-5.
2. Gao Y., Zhou Y.S., Qian M., He X.N., Redepenning J., Goodman P., Li H.M., Jiang L., Lu Y.F. Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes, Carbon, 2013, vol. 51, pp. 52–58. https://doi.org/10.1016/j.carbon.2012.08.009.
3. Fu M., Huang J., Feng S., Zhang T., Qian P.-C., Wong W.-Y. One-step solid-state pyrolysis of bio-wastes to synthesize multi-hierarchical porous carbon for ultra-long life supercapacitors, Mater. Chem. Front., 2021, vol. 5, pp. 2320–2327. https://doi.org/10.1039/D0QM00960A.
4. Tian Q., Wang X., Xu X., Zhang M., Wang L., Zhao X., An Z., Yao H., Gao J. A novel porous carbon material made from wild rice stem and its application in supercapacitors, Materials Chemistry and Physics, 2018, vol. 213, pp. 267–276. https://doi.org/10.1016/j.matchemphys.2018.04.026.
5. Laheäär A., Przygocki P., Abbas Q., Béguin F. Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors, Electrochemistry Communications, 2015, vol. 60, pp. 21–25. https://doi.org/10.1016/j.elecom.2015.07.022.
6. Abbas A., Tabish T.A., Bull S.J., Lim T.M., Phan A.N. High yield synthesis of graphene quantum dots from biomass waste as a highly selective probe for Fe3+ sensing, Sci Rep., 2020, vol. 10, 21262. https://doi.org/10.1038/s41598-020-78070-2.
7. Wang Y., Shi Z., Huang Y., Ma Y., Wang C., Chen M., Chen Y. Supercapacitor Devices Based on Graphene Materials, J. Phys. Chem., 2009, vol. 113, pp. 13103–13107. https://doi.org/10.1021/jp902214f.
8. Yeleuov M., Daulbayev C., Taurbekov A., Abdisattar A., Ebrahim R., Kumekov S., Prikhodko N., Lesbayev B., Batyrzhan K. Synthesis of graphene-like porous carbon from biomass for electrochemical energy storage applications, Diamond and Related Materials, 2021, vol. 119, 108560. https://doi.org/10.1016/j.diamond.2021.108560.
9. Roy A., Kar S., Ghosal R., Naskar K., Bhowmick A.K. Facile Synthesis and Characterization of Few-Layer Multifunctional Graphene from Sustainable Precursors by Controlled Pyrolysis, Understanding of the Graphitization Pathway, and Its Potential Application in Polymer Nanocomposites, ACS Omega, 2021, vol. 6, pp. 1809–1822. https://doi.org/10.1021/acsomega.0c03550.
10. Prikhod’ko N.G., Mansurov Z.A., Auelkhankyzy M., Lesbaev B.T., Nazhipkyzy M., Smagulova G.T. Flame synthesis of graphene layers at low pressure, Russ. J. Phys. Chem., 2015, vol. 9, pp. 743–747. https://doi.org/10.1134/S1990793115050115.
11. Song X., Ma X., Li Y., Ding L., Jiang R. Tea waste derived microporous active carbon with enhanced double-layer supercapacitor behaviors, Applied Surface Science, 2019, vol. 487, pp. 189–197. https://doi.org/10.1016/j.apsusc.2019.04.277.
12. Bhoyate S., Ranaweera C.K., Zhang C., Morey T., Hyatt M., Kahol P.K., Ghimire M., Mishra S.R., Gupta R.K. Eco-Friendly and High Performance Supercapacitors for Elevated Temperature Applications Using Recycled Tea Leaves, Global Challenges, 2017, vol. 1, 1700063. https://doi.org/10.1002/gch2.201700063.
13. Adan-Mas A., Alcaraz L., Arévalo-Cid P., López-Gómez Félix. A., Montemor F. Coffee-derived activated carbon from second biowaste for supercapacitor applications, Waste Management, 2021, vol. 120, pp. 280–289. https://doi.org/10.1016/j.wasman.2020.11.043.
14. Li Y., Li Z., Xing B., Li H., Ma Z., Zhang W., Reubroycharoen P., Wang S. Green conversion of bamboo chips into high-performance phenol adsorbent and supercapacitor electrodes by simultaneous activation and nitrogen doping, Journal of Analytical and Applied Pyrolysis, 2021, vol. 155, 105072. https://doi.org/10.1016/j.jaap.2021.105072.
15. Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Communications, 2007, vol. 143, pp. 47–57. https://doi.org/10.1016/j.ssc.2007.03.052.
16. Bleu Y., Bourquard F., Loir A., Barnier V., Garrelie F., Donnet C. Raman study of the substrate influence on graphene synthesis using a solid carbon source via rapid thermal annealing, J Raman Spectrosc, 2019, vol. 50, pp. 1630–1641. https://doi.org/10.1002/jrs.5683.
17. He X., Ling P., Yu M., Wang X., Zhang X., Zheng M. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors, Electrochimica Acta, 2013, vol. 105, pp. 635–641. https://doi.org/10.1016/j.electacta.2013.05.050.
18. Han J., Xu G., Ding B., Pan J., Dou H., MacFarlane D.R. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors, J. Mater. Chem. A, 2014, vol. 2, pp. 5352–5357. https://doi.org/10.1039/C3TA15271E.
19. Kang W., Lin B., Huang G., Zhang C., Yao Y., Hou W., Xu B., Xing B. Peanut bran derived hierarchical porous carbon for supercapacitor, J Mater Sci: Mater Electron, 2018, vol. 29, pp. 6361–6368. https://doi.org/10.1007/s10854-018-8615-1.
20. Hao X., Wang J., Ding B., Wang Y., Chang Z., Dou H., Zhang X. Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors, Journal of Power Sources, 2017, vol. 352, pp. 34–41. https://doi.org/10.1016/j.jpowsour.2017.03.088.
21. Sun J., Niu J., Liu M., Ji J., Dou M., Wang F. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors, Applied Surface Science, 2018, vol. 427, pp. 807–813. https://doi.org/10.1016/j.apsusc.2017.07.220.
22. Peng C., Yan X., Wang R., Lang J., Ou Y., Xue Q. Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes, Electrochimica Acta, 2013, vol. 87, pp. 401–408. https://doi.org/10.1016/j.electacta.2012.09.082.
23. Ratnaji T., L. John Kennedy. Hierarchical porous carbon derived from tea waste for energy storage applications: Waste to worth, Diamond & Related Materials, 2020. https://doi.org/10.1016/j.diamond.2020.108100.
Review
For citations:
Duisenbek A.N., Beissenova E.E., Beissenov R.E., Askaruly K., Prikhodko N.G., Tuganbaev А.B. PRODUCTION OF HIGH-PERFORMANCE SUPERCAPACITOR ELECTRODES BASED ON GRAPHENE-LIKE CARBON OBTAINED FROM TEA WASTE. Herald of the Kazakh-British technical university. 2024;21(4):186-195. (In Russ.) https://doi.org/10.55452/1998-6688-2024-21-4-186-195