Preview

Herald of the Kazakh-British technical university

Advanced search

DEVELOPMENT PROCESS OF A FREQUENCY CONVERTER FOR INDUCTION HEATING OF OIL PIPELINE

https://doi.org/10.55452/1998-6688-2024-21-3-331-342

Abstract

The article provides a detailed overview of the history, development and applications of frequency converters, with particular emphasis on their use in the oil and gas industry. It traces the evolution of frequency converters from their inception in the late 19th and early 20th centuries to their modern applications, which use microprocessors and digital signal processing to precisely control the output frequency. In the oil and gas industry, frequency converters are critical to efficient and accurate induction heating of pipelines. They convert a fixed frequency and voltage power supply into a variable frequency and variable voltage output, controlling the speed of the induction motors used in the heating process. The article also covers the design and modeling of frequency converters, discussing the process of characterizing them, creating mathematical models, and using modeling software tools such as MatLab. It presents equations for inductive energy, capacitor energy, resonance conditions and power factor, which are necessary in the mathematical modeling of frequency converters. The article concludes by highlighting the impact of frequency converters on the efficiency and economics of induction heating systems. It emphasizes the need for careful design and modeling to ensure optimal performance and safety.

About the Author

D. G. Insepov
Kazakh National Research Technical University named after K.I. Satpayeva
Kazakhstan

PhD student 

050013, Almaty



References

1. Mulko M. Alternating Current and Direct Current: Which is Better? Interesting Engineering, 2021. Available at: https://interestingengineering.com/science/alternating-current-and-direct-current-which-isbetter.

2. Cardoso A.J.M. Electrical Heating System for Oil Pipelines. International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2022. Available at: https://www.researchgate.net/publication/363024597_Electrical_Heating_System_for_Oil_Pipelines.

3. Hilsenbeck S. A nugget of knowledge: frequency converters, 2024. Available at: https://lappconnect.lappgroup.com/en/expertise/a-nugget-of-knowledge-frequency-converters/#autor.

4. Variable Frequency Drive (VFD) – Circuit Diagram, Working, Types, Advantage, Disadvantages, and Applications. Electrical Technology, 2021. Available at: https://www.electricaltechnology.org/2021/11/vfdvariable-frequency-drive.html

5. Kumar A., Sarkar D., and Sadhu P.K. An Efficient Power Control Technique for High-Frequency Resonant Inverter in Induction Heating System. Eng. Technol. Appl. Sci. Res., 2018, vol. 8, no. 6, pp. 3530–3535

6. Induction Heating in Oil & Gas Industry, 2024. Available at: https://ultraflexpower.com/industries/oilgas/#:~:text=The%20Oil%20and%20Gas%-20industry,drilling%20tools%20and%20many%20more.

7. Induction heater technological process. Monograph, 2020. – 120 p.

8. Power dissipation in inductors, 2009. Available at: https://www.physicsforums.com/threads/powerdissipation-in-inductors.334018/

9. Isembergenov N.Т., Sagyndikova A.J., Konyrova M.Zh. Frequency converter for induction heating oil in oil pipelines. WSEAS Transactions on Electronics, 2021, vol. 12, pp. 24–31.

10. Parkevich E.V. (2014) Vsjo ob R − L − C konture. Metodicheskoe posobie po podgotovke k olimpiadam, Moscow, 47 p. [in Russian].

11. Elton M.D. Analyzation of the Resistor-Inductor-Capacitor Circuit. Undergraduate Journal of Mathematical Modeling, 2017, vol. 7, 21 p.

12. Mughees N. Applications of IGBTs in power electronics. Industrial Electronics. – 2023. Available at: https://electronics360.globalspec.com/article/19849/applications-of-igbts-in-power-electronics.

13. Insepov D.G. (2016) Vysokochastotnyj indukcionnyj nagrev nefteprovoda. Elektrifіkacіja transport, no. 12, pp. 103–106 [in Russian].

14. Konesev S.G., Hljupin P.A. Razrabotka algoritma inzhenernogo rascheta indukcionnoj nagrevatel'noj sistemy nefteprovodov. Available at: https://s.science-education.ru/pdf/2015/2/709.pdf [in Russian].

15. Larin V.S., Zenenko A.S., Rydkin M.A. (2023) Opredelenie sobstvennyh chastot i kojefficientov zatuhanija po izmerennym peredatochnym funkcijam naprjazhenija obmotok silovyh transformatorov. Jelektrichestvo, no. 1, pp. 28–35 [in Russian].

16. Bazarov A.A., Danilushkin A.I., Danilushkin V.A. (2016) Kompleksnoe modelirovanie i upravlenie processom nepreryvnogo indukcionnogo nagreva ferromagnitnyh zagotovok. Vestn. Samar. gos. tehn. un-ta. Ser. Tehnicheskie nauki, no. 2, pp. 128–138 [in Russian].

17. Bankar S.S., Joshi P.M. Modelling and simulation of high frequency inverter for induction heating application, 2018. Available at: https://www.researchgate.net/publication/309355214_MODELLING_AND_SIMULATION_OF_HIGH_FREQUENCY_INVERTER_FOR_INDUCTION_HEATING_APPLICATION

18. Areitioaurtena M., Segurajauregi U., Akujärvi V. A semi-analytical coupled simulation approach for induction heating. Adv. Model. and Simul. in Eng. Sci., 2021, vol. 8. Available at: https://doi.org/10.1186/s40323-021-00199-0.

19. Du H., Li Ju, Qu Ya. Mathematical Modeling of Eddy-Current Loss for a New Induction Heating Device. Mathematical Modeling of Heat and Mass Transfer in Energy Science and Engineering, 2014. Available at: https://www.hindawi.com/journals/mpe/2014/923745/

20. Roginskaja L.Je., Gorbunov A.S. Transformatorno-induktornyj kompleks s posledovatel'nym vkljucheniem kondensatora v cep' nagruzki. Available at: https://s.science-education.ru/pdf/2013/6/858.pdf [in Russian]


Review

For citations:


Insepov D.G. DEVELOPMENT PROCESS OF A FREQUENCY CONVERTER FOR INDUCTION HEATING OF OIL PIPELINE. Herald of the Kazakh-British technical university. 2024;21(3):331-342. https://doi.org/10.55452/1998-6688-2024-21-3-331-342

Views: 314


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)