Preview

Herald of the Kazakh-British technical university

Advanced search

ON THE GENERALIZATION OF SOME CLASSES OF CONVEX IN DIRECTION AND TYPICALLY REAL FUNCTIONS

https://doi.org/10.55452/1998-6688-2024-21-3-176-190

Abstract

In the article by M.O. Reade (Duke Math. Journal, 1956) using the condition |arg (f'(z)/ g'(z)) | ≤ γπ/2, where g(z) is a convex function,0≤γ≤1 , a class of functions close-to-convex (almost convex) of order γ is introduced. In our paper, we introduce a subclass of the class of close-to-convex (almost convex) order γ functions satisfying the condition |arg [(1-λzn ) f'(z)]| ≤ γπ/2, which, for different parameter values, gives a number of well-known subclasses of univalent (schlicht) functions. Based on this subclass, a class of close-to-starlike (almost star-shaped) functions is constructed, containing a number of subclasses that have been actively studied by many authors in recent years, as well as a classical class of typically real functions. For this classes exact theorems of distortion (growth) and radii of convexity (starlikeness) are obtained, generalizing previously known results. The case is also considered when the functions of the introduced classes have missing members in the power series expansion. The results obtained are accurate and not only generalize previously known results, but also reveal the properties of a number of new subclasses of univalent (schlicht) functions.

About the Authors

F. F. Maiyer
Non-commercial joint-stock company «Akhmet Baitursynuly Kostanay Regional University»
Kazakhstan

Candidate of Physical and Mathematical Sciences, Professor 

Kostanay 110000



M. G. Tastanov
Non-commercial joint-stock company «Akhmet Baitursynuly Kostanay Regional University»
Kazakhstan

Candidate of Physical and Mathematical Sciences, Professor 

Kostanay 110000



A. A. Utemissova
Non-commercial joint-stock company «Akhmet Baitursynuly Kostanay Regional University»
Kazakhstan

Candidate of Pedagogical Sciences 

Kostanay 110000



R. S. Ysmagul
Non-commercial joint-stock company «Akhmet Baitursynuly Kostanay Regional University»
Kazakhstan

Candidate of Physical and Mathematical Sciences, Professor 

Kostanay 110000



References

1. Avkhadiev F.G., Aksent'ev L.A. (1975) The main results on sufficient conditions for an analytic function to be schlicht. Russian Mathematical Surveys, vol. 30, no. 4, pp. 1–63. https://www.mathnet.ru/links/1632ed8357df9ffe04ddeebedf7e40ba/rm4232_eng.pdf.

2. Reade M.O. (1956) The coefficients of close-to-convex functions. Duke Math. J., vol. 23, no. 3, pp. 459–462. https://doi.org/10.1215/S0012-7094-56-02342-0.

3. Hengartner W. and Schober G. (1971) Analytic functions close to mappings convex in one direction. Proc. Amer. Math. Soc., vol. 28, no. 2, pp. 519–524. https://www.ams.org/journals/proc/1971-028-02/S0002-9939-1971-0277704-9/S0002-9939-1971-0277704-9.pdf

4. Lecko A. (2002) The class of functions convex in the negative direction of the imaginary axis of order (α,β). J. of the Austr. Math. Soc., vol. 29, no. 11, pp. 641–650. doi: https://dx.doi.org/10.1155/S0161171202007810

5. Maiyer F.F. (2002) Geometricheskie svojstva nekotoryh klassov analiticheskih v kruge funkcij, vypuklyh v napravlenii mnimoj osi. [Geometric properties of some classes of analytic functions in a circle in the direction of the imaginary axis]. Kostanaj. Vestnik nauki KGU im. A. Bajtursynova. Serija estestvennotehnicheskih nauk, vol. 6, no. 2, pp. 48–50. https://repo.kspi.kz/bitstream/handle/123456789/7030/2002-6-2-page48-50.pdf?sequence=1&isAllowed=y. [In Russian].

6. Maiyer F.F., Tastanov M.G., Utemisova A.A. and Baimankulov A.T. (2023) Ob obobshhenii nekotoryh klassov pochti vypuklyh i tipichno veshhestvennyh funkcij [On the generalization of some classes of closeto-convex and typically real functions]. Zhurnal «Vestnik TGU», serija «Matematika. Mehanika», Tomsk, no. 80, pp. 147–156. [In Russian]. https://cyberleninka.ru/article/n/ob-obobschenii-nekotoryh-klassov-pochtivypuklyh-i-tipichno-veschestvennyh-funktsiy/viewer

7. Reade M.O. (1955) On close-to-close univalent functions. Michigan Math. J., no. 3, pp. 59–62.

8. Khatter K., Lee, S. K. and Ravichandran V. (2020) Radius of starlikeness for classes of analytic functions. arXiv preprint arXiv:2006.11744. doi: https://doi.org/10.48550/arXiv.2006.11744.

9. Sebastianc A. and Ravichandran V. (2021) Radius of starlikeness of certain analytic functions. Math. Slovaca, vol. 71, no. 1, pp. 83–104. https://doi.org/10.1515/ms-2017-0454.

10. Kanaga R. and Ravichandran V. (2021) Starlikeness for certain close-to-star functions. Hacet. J. Math. Stat., vol. 50, no. 2, pp. 414–432. https://doi.org/10.15672/hujms.702703.

11. Sharma M., Jain N.K. and Kumar S. (2023) Constrained radius estimates of certain analytic functions. arXiv:2305.16210v1/

12. El-Faqeer A.S.A., Mohd M.H., Ravichandran V. and Supramaniam S. (2020). Starlikeness of certain analytic functions. arXiv preprint arXiv:2006.11734. https://doi.org/10.48550/arXiv.2006.11734.

13. Rogosinski W. (1932) Über positive harmonische entwicklungen und typisch-reelle potenzreihen. Math. Zeitschr., vol. 35, no. 1, pp. 93–121. https://doi.org/10.1007/BF01186552.

14. Goluzin G.M. (1950) On typically real functions. Matem. sb., vol. 27, no. 69, 201–2018. [In Russian]. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=5913&option_lang=eng

15. Gelfer S.A. (1964) Tipichno veshhestvennye funkcii [Typically real functions]. Matem. sb., 64(106):2, 171–184. https://www.mathnet.ru/rus/sm4441. [In Russian]

16. Noshiro K. (1934) On the theory of schlicht functions. J. Fac. Sci. Hokkaido Imp. Univ. Ser. I Math., vol. 2, no. 3, pp. 129–155. https://doi.org/10.14492/hokmj/1531209828

17. Goluzin G.M. (1966) Geometricheskaya teoriya funktsiy kompleksnogo peremennogo [Geometric Theory of Functions of a Complex Variable]. Moscow, Nauka Publ., 628 p. [In Russian].

18. MacGregor T.H. (1962) Functions whose derivative has a positive real part. Trans. Amer. Math. Soc., no. 104, pp. 532–537. https://doi.org/10.1090/s0002-9947-1962-0140674-7.

19. Shaffer D.B. (1973) Distortion theorems for a special class of analytic functions. Proc. Amer. Math. Soc., vol. 39, no. 2, pp. 281–287. https://doi.org/10.2307/2039632.

20. Libera R.J. (1964) Some radius of convexity problems. Duke Math. J., vol. 31, no. 1, pp. 143–158. https://10.1215/S0012-7094-64-03114-X.


Review

For citations:


Maiyer F.F., Tastanov M.G., Utemissova A.A., Ysmagul R.S. ON THE GENERALIZATION OF SOME CLASSES OF CONVEX IN DIRECTION AND TYPICALLY REAL FUNCTIONS. Herald of the Kazakh-British technical university. 2024;21(3):176-190. (In Russ.) https://doi.org/10.55452/1998-6688-2024-21-3-176-190

Views: 350


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)