NUMERICAL METHOD FOR SOLVING THE BOUNDARY VALUE PROBLEM FOR THE PARABOLIC EQUATION
https://doi.org/10.55452/1998-6688-2024-21-3-165-175
Abstract
A linear boundary value problem for a parabolic equation is considered in a closed domain. Based on the broken line method, the boundary value problem for a parabolic equation is replaced by a two-point boundary value problem for a system of linear ordinary differential equations by discretizing the unknown function u(t,x) with respect to the variable x. The obtained two-point boundary value problem is investigated by the parameterization method of Professor Dzhumabaev. Based on this method, an algorithm for finding a numerical solution to the two-point boundary value problem for a system of linear ordinary differential equations is constructed. The constructed algorithm is realized by applying known numerical methods. The constructiveness and efficiency of the parameterization method also allows us to construct a numerical solution of the considered linear boundary value problem for the parabolic equation. One numerical example is given to verify and illustrate the proposed algorithm.
About the Authors
N. B. IskakovaKazakhstan
Candidate of Phys.-Math.Sc., Leading Researcher
050010, Almaty;
050040, Almaty
Zh. М. Kadirbayeva
Kazakhstan
Candidate of Phys.-Math.Sc., Leading Researcher
050010, Almaty;
050000, Almaty;
050000, Almaty
E. А. Bakirova
Kazakhstan
Candidate of Phys.-Math.Sc., Leading Researcher
050010, Almaty;
050000, Almaty;
S. K. Kuanysh
Kazakhstan
Doctoral student, Teacher
050040, Almaty
References
1. Tikhonov A.N., Samarskii A.A. (2011) Equations of mathematical physics, Dover Publications, New York.
2. Vasudeva Murthy A.S., Verwer J.G. (1992) J. Comput. Appl. Math., vol 39, pp. 121–132. https://doi.org/10.1016/0377-0427(92)90229-Q
3. Day W.A. (1983) Quart. Appl. Math., vol. 40, pp. 468–475. https://doi.org/10.1090/qam/693879
4. Bouziani A. (1996) J. Appl. Math. Stoch. Anal. Vol. 9, pp. 323–330.
5. Vladimirov V.S., Yankovsky E. (1986) A collection of problems on the equations of mathematical physics, Springer-Verlag, Germany.
6. Trynin A.Y. Comput. (2023) Math. and Math. Phys., vol. 63, pp. 1264–1284. https://doi.org/10.1134/S0965542523050159.
7. Dehghan M. (2003). Appl. Math. Comput., vol. 145, pp. 185–194. https://doi.org/10.1016/s0096-3003(02)00479-4.
8. Dalabaev U., Hasanova D. (2023) Mathematics and Computer Science, vol. 8, pp. 39–45 https://doi.org/0.11648/j.mcs.20230802.11.
9. Colton D. (1977) Journal of Differential Equations, vol. 26, pp. 181–190.
10. Dzhumabaev D.S. (1983) Izvestiya AN KazSSR. Seriya fiz.-matem., no. 1, pp. 8–11 [in Russian].
11. Asanova A.T., Dzhumabaev D.S. (2000) Izvestiya MON RK, NAN RK. Seriya fiz.-matem., no. 5, pp. 3–8 [in Russian].
12. Assanova A.T., Bakirova E.A. and Kadirbayeva Zh.M. (2019) News of the NAS RK. Phys.-Math. Series, vol. 6, pp. 14–24.
13. Dzhumabayev D.S. (1989) USSR Comput.Math. Math. Phys., vol. 29, pp. 34–46.
14. Dzhumabaev D.S. (2016) J. Comput. Appl.Math., vol. 294, pp. 342–357. http://dx.doi.org/10.1016/j.cam.2015.08.023.
15. Dzhumabaev D.S., Bakirova E.A. and Mynbayeva S.T. (2020) Math. Methods Appl. Sci., vol. 4, pp. 1788–1802. https://doi.org/10.1002/mma.6003.
16. Assanova A.T., Bakirova E.A. and Kadirbayeva Zh.M. (2021) Math. Model. Anal., vol. 26, pp. 34–54. https://doi.org/10.3846/mma.2021.11977.
17. Assanova A.T., Bakirova E.A., Kadirbayeva Zh.M. and Uteshova R.E. (2020). Comput. Appl. Math., vol. 39, pp. 248. https://doi.org/10.1007/s40314-020-01298-1.
18. Assanova A.T., Kadirbayeva Zh.M. (2018) Comput. Appl. Math., vol. 37, pp. 4966–4976. https://doi.org/10.1007/s40314-018-0611-9.
19. Temesheva S.M., Dzhumabaev D.S. and Kabdrakhova S.S. (2021) Lobachevskii journal of mathematics, vol. 42, pp. 606–612. https://doi.org/10.1134/S1995080221030173.
20. Iskakova N.B., Temesheva S.M. and Uteshova R.E. (2023). Math. Meth. Appl. Sci., vol. 46, pp. 11283–11297. https://doi.org/10.1002/mma.9181.
21. Bakirova E.A., Iskakova N.B. and Kadirbayeva Zh.M. (2023) KazNU Bulletin, vol. 119, pp. 19–29. https://doi.org/10.26577/JMMCS2023v119i3a2.
22. Bakirova E.A., Iskakova N.B, Temesheva S.M. and Kadirbayeva Zh.M. (2024) KBTU Khabarshysy, vol. 68, pp. 64–74. https://doi.org/10.55452/1998-6688-2024-21-1-64-74 (in Kazakh).
23. Kadirbayeva Zh.M., Bakirova E.A. and Tleulesova A.B. (2024). Mathematica Slovaca, vol. 74, pp. 403–416. https://doi.org/10.1515/ms-2024-0031.
24. Kadirbayeva Zh.M. and Kabdrakhova S.S. (2022) Open Math., vol. 20, pp. 1173–1183. https://doi.org/10.1515/math-2022-0496.
Review
For citations:
Iskakova N.B., Kadirbayeva Zh.М., Bakirova E.А., Kuanysh S.K. NUMERICAL METHOD FOR SOLVING THE BOUNDARY VALUE PROBLEM FOR THE PARABOLIC EQUATION. Herald of the Kazakh-British technical university. 2024;21(3):165-175. (In Kazakh) https://doi.org/10.55452/1998-6688-2024-21-3-165-175