Preview

Herald of the Kazakh-British technical university

Advanced search

COMPUTING THE DEGREE-4 INVARIANT POLYNOMIAL BASIS FOR 7 QUBITS

https://doi.org/10.55452/1998-6688-2024-21-3-128-136

Abstract

Understanding the complexity of entangled states within the context of SLOCC (stochastic local operations and classical communications) involving several number qubits is essential for advancing our knowledge of quantum systems. This complexity is often analyzed by classifying the states via local symmetry groups. Practically, tthe resulting classes can be distinguished using invariant polynomials, but the size of these polynomials grows rapidly. Hence, it is crucial to obtain the smallest possible invariants. In this short note, we compute the basis of invariant polynomials of 7 qubits of degree 4, which are the smallest degree invariants. We obtain these polynomials using the representation theory and algebraic combinatorics. 

About the Author

A. Amanov
Kazakh-British Technical University
Kazakhstan

PhD student 

050000, Almaty



References

1. Dür W., Vidal G., & Cirac J.I. Three qubits can be entangled in two inequivalent ways. Physical Review A, 2000, vol. 62, no. 6, p. 062314.

2. Luque J.-G. and Thibon Jean-Yves. Polynomial invariants of four qubits, Physical Review A, Apr. 2003, vol. 67, no. 4,. https://doi.org/10.1103/physreva.67.042303.

3. Luque J.-G. and Thibon Jean-Yves. Algebraic invariants of five qubits. Journal of physics, Dec. 2005, vol. 39, no. 2, pp. 371–377. https://doi.org/10.1088/0305-4470/39/2/007.

4. Horodecki R., Horodecki P., Horodecki M., and Horodecki K. Quantum entanglement. Reviews of Modern Physics, Jun. 2009, vol. 81, no. 2, pp. 865–942. https://doi.org/10.1103/revmodphys.81.865.

5. Nielsen M.A. and Chuang I.L. Quantum computation and quantum information. Cambridge Cambridge University Press, 2019.

6. Amanov A. Invariant polynomials with applications to Quantum Computing. Herald of the KazakhBritish technical university, 2024, vol. 21, no. 2, pp. 95–105. https://doi.org/10.55452/1998-6688-2024-21-2-95-105.

7. Miyake A. Classification of multipartite entangled states by multidimensional determinants. Physical Review A, 2003, vol. 67, no. 1. https://doi.org/10.1103/physreva.67.012108.

8. Bürgisser P. and Ikenmeyer C. Fundamental invariants of orbit closures. Journal of Algebra, 2017, vol. 477, pp. 390–434. https://doi.org/10.1016/j.jalgebra.2016.12.035.

9. Bürgisser P., Garg A., Oliveira R., Walter M., and Wigderson A. Alternating Minimization, Scaling Algorithms, and the Null-Cone Problem from Invariant Theory. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 94, pp. 24:1–24:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.ITCS.2018.24.

10. Amanov A. and Yeliussizov D. Fundamental Invariants of Tensors, Latin Hypercubes, and Rectangular Kronecker Coefficients, International Mathematics Research Notices, 2022, vol. 2023, no. 20, pp. 17552–17599. https://doi.org/10.1093/imrn/rnac311.

11. Bürgisser P., Franks C., Garg A., Oliveira R., Walter M., & Wigderson A. Efficient algorithms for tensor scaling, quantum marginals, and moment polytopes. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), 2018, pp. 883–897. IEEE.

12. Coecke B., & Kissinger A. The compositional structure of multipartite quantum entanglement. In International Colloquium on Automata, Languages, and Programming, 2010, pp. 297–308. Berlin, Heidelberg: Springer Berlin Heidelberg.

13. Cervera-Lierta A., Gasull A., Latorre J.I. and Sierra G. Multipartite entanglement in spin chains and the hyperdeterminant. Journal of physics. A, Mathematical and theoretical (Print), Nov. 2018, vol. 51, no. 50, pp. 505301–505301. https://doi.org/10.1088/1751-8121/aaee1f.

14. Viehmann O., Eltschka C. and Siewert J. Polynomial invariants for discrimination and classification of four-qubit entanglement. Physical Review A, May 2011, vol. 83, no. 5. https://doi.org/10.1103/physreva.83.052330.

15. Cayley A. On the theory of determinants. Pitt Press, 1844.

16. Cayley A. On the theory of linear transformations. E. Johnson, 1845.

17. Gelfand I.M., Kapranov M.M., and Zelevinsky A.V. Hyperdeterminants, Advances in Mathematics, Dec. 1992, vol. 96, no. 2, pp. 226–263. https://doi.org/10.1016/0001-8708(92)90056-q.

18. SageMath Mathematical Software System – Sage, SageMath Mathematical Software System. http://www.sagemath.org (accessed Apr. 2024).

19. Maria C. Parameterized Complexity of Quantum Invariants, Proceedings of the 37th International Symposium on Computational Geometry (SoCG 2021), 2021. https://doi.org/10.4230/LIPIcs.SoCG.2021.53.

20. Haddadin W. Invariant polynomials and machine learning. arXiv preprint arXiv:2104.12733, 2021.

21. Raith F., Blecha C., Nagel T., Parisio F., Kolditz O., Günther F., Stommel M., and Scheuermann G. Tensor field visualization using fiber surfaces of invariant space. IEEE transactions on visualization and computer graphics, 2018, 25, no. 1, pp. 1122–1131.

22. Hillar C.J., & Lim L.H. Most tensor problems are NP-hard. Journal of the ACM (JACM), 2013, vol. 60, no. 6, pp. 1–39.


Review

For citations:


Amanov A. COMPUTING THE DEGREE-4 INVARIANT POLYNOMIAL BASIS FOR 7 QUBITS. Herald of the Kazakh-British technical university. 2024;21(3):128-136. https://doi.org/10.55452/1998-6688-2024-21-3-128-136

Views: 327


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)