Preview

Herald of the Kazakh-British Technical University

Advanced search

APPLICATION LORENTZ METRICS IN PATTERN RECOGNITION

Abstract

The development of technologies and technologies has revolutionized the world of science, in particular, the emergence of only one computing technology has given new impetus to science and led to the discovery of various innovations. Nowadays, the integration of science into the world of science allows us to judge the emergence of new ideas and the optimality of the past. In this article, we first reviewed the literature for foreign publications on the topic under study and compared the Lorentz metric with Euclidean space as an example in formulas and illustrations. Using the Lorentz metric, we created a new model recognition algorithm and checked the database to verify the effectiveness of this algorithm. As a result of the experiment, the algorithm created by the Lorentz metric was compared with classical algorithms, namely Bayes algorithms, kNN and similar ones, and then presented specific results.

About the Authors

Y. Kerimbekov
Кожа Ахмет Ясауи атындагы Халыцаралыц цазац-турік унйверсйтеті
Kazakhstan


Ye. S. Seiitkamal
Кожа Ахмет Ясауи атындагы Халыцаралыц цазац-турік унйверсйтеті
Kazakhstan


References

1. Y. Deng, Y. Li , Y. Qian , X. Ji , Q. Dai , Visual words assignment via information-theoretic manifold embedding, IEEE Trans. Cybern. 44 (10) (2014) 1924-1937.

2. Tan X., et al. “Face recognition from a single image per person: A survey”, Pattern recognition 39 (9):1725-1745, 2006.

3. Theodoridis S., Koutroumbas K., Pattern Recognition, 4th ed., Elsevier, 2009.

4. Kerimbekov Y., et al., “The use of Lorentz distance metric in classification problems.” Pattern Recognition Letters, 84: 170-176, 2016.

5. R. Liu , Z. Su , Z. Lin , X. Hou , Lorentzian discriminant projection and its applications, in: ACCV’09, 3, 2009, pp. 311-320.

6. H. S. Bilge , Y. Kerimbekov , Classification with Lorentzian distance metric, in: 23th Signal Pro­cessing and Communications Applications Conference (SIU2015), 2015, pp. 2106-2109.

7. H. S. Bilge , Y. Kerimbekov , H. H. Ugurlu , A new classification method by using Lorentzian distance metric, in: Innovations in Intelligent SysTems and Applications 2015 International Sym­posium on, 2015, pp. 1-6.

8. Y. Deng , Q. Dai , R. Liu , Z. Zhang , S. Hu , Low-rank structure learning via non-convex heuristic recovery, IEEE Trans. Neural Netw. Learn. Syst. 24 (3) (2013) 383-396.

9. Gundogan H., K e9ioglu O., “Lorentz matrix multiplicaiton and the motions on Lorentz plane”, Glasnik Matematicki, 41: 329-334, 2006.

10. Brualdi R., Introductory Combinatorics, 5th ed., Pearson Prentice Hall, 2010.

11. Abate A. F., et al. “2D and 3D face recognition: A survey”, Pattern recognition letters, 28(14):1885-1906, 2007.


Review

For citations:


Kerimbekov Y., Seiitkamal Ye.S. APPLICATION LORENTZ METRICS IN PATTERN RECOGNITION. Herald of the Kazakh-British Technical University. 2019;16(2):108-114. (In Kazakh)

Views: 308


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)