Preview

Herald of the Kazakh-British technical university

Advanced search

CONTROL OF THE SIZES OF LEAD SULFIDE (PBS) NANOPARTICLES BY PLASMA TREATMENT METHOD

https://doi.org/10.55452/1998-6688-2024-21-2-266-272

Abstract

In this work, the optimal parameters for the production of lead sulfide nanoparticles (PbS) were determined. Lead sulfide nanoparticles were obtained by chemical precipitation in an aqueous solution of lead nitrate (Pb(NO3 )2 ) 25 ml 0.18 M (1.524 g), sodium hydroxide (NaOH) 75 ml 0.38 M (1.172 g), thiourea (CH4 N2 S) 50 ml 0.11 M (0.399 g), at a reaction temperature of 100 °C, the duration of the synthesis reaction was 120 minutes. The particles were deposited on a pre-purified silicon (Si) substrate. After synthesis, the particles were processed in a glow discharge plasma in an argon atmosphere at a pressure of the order of Ð=1 Pa, for t1 =1min and U = 2 min, at a voltage ofU = 2 kV and a current strength of I =1,5 mA. The morphology of the obtained structures was studied using a scanning electron microscope (SEM), the elemental composition of the particles was determined by energy dispersion analysis (EDX). Plasma treatment reduces the average particle size from the submicron to the nanometer range.

About the Authors

G. S. Amirbekova
Al-Farabi Kazakh National University
Kazakhstan

doctoral student

050040, Almaty



Zh. K. Tolepov
Al-Farabi Kazakh National University
Kazakhstan

PhD

050040, Almaty



N. Guseinov
Al-Farabi Kazakh National University
Kazakhstan

050040, Almaty



M. A. Tulegenova
Al-Farabi Kazakh National University
Kazakhstan

PhD

050040, Almaty



B. G. Orynbai
Al-Farabi Kazakh National University
Kazakhstan

050040, Almaty



T. Koshtybayev
Kazakh National Women's Teacher Training University
Kazakhstan

Candidate of Physical and Mathematical Sciences

050040, Almaty



Zh. Otarbay
Human-Engine LLC
United States

Los Angeles, CA, 91106



References

1. El Madani A., Daoudi1 O., Benyousse S., Qachaou A., Fahoume M., Lharch M. (2021) Experimental and Ab Initio Investigation of the Physical Properties of PbS Thin Films Prepared by Chemical Bath Deposition (CBD), Brazilian Journal of Physics, no 51, pp. 1166–1174.

2. Gunes S., Fritz K.P., Neugebauer H., Sariciftci N.S., Kumar S., Scholes G.D. (2007) Hybrid solar cells using PbS nanoparticles. Sol. Energy Mater. Sol. Cells 91, pp. 420–423.

3. Preetha K.C., Murali K.V., Regina A.J., Deepa K., Remadevi T.L. (2012) Efect of cationic precursor pH on optical and transport properties of silar deposited nanocrystalline PbS thin flms. Curr. Appl. Phys., no. 12, pp. 53–59.

4. Yu H., Liu S., Baek S., Kim D.Y., Dong C., So F. (2016) Solution-Processed Copper Oxide Interlayers for Broadband PbS Quantum- Dot Photodiodes., no. 4, pp. 11205−11211.

5. Patel M., Kim H.S., Kim J., Yun J.H., Kim S.J., Choi E.H., Park H.H. (2017) Excitonic Metal Oxide Heterojunction (NiO/ZnO) Solar Cells for All-Transparent Module Integration. Sol. Energy Mater. Sol.Cells, no. 170, pp. 246−253.

6. Barrios-Salgado E., Rodríguez-Lazcano Y., Pérez-Orozco J.P., Colin J., Altuzar P., Campos J., Quesada D. Effect of Deposition Time on the Optoelectronics Properties of PbS Thin Films Obtained by Microwave-Assisted Chemical Bath Deposition, Hindawi Advances in Condensed Matter Physics, vol. 2019, p. 8.

7. Chattarki A.N., Kamble S.S., Deshmukh L.P., Mater. Lett., 67(1), 39 (2012).

8. Akhmedov O.R., Huseynaliev M.G., Abdullaev N.A., Abdullaev N.M., Babaev S.S., Kasumov N.A. (2016) Optical properties of PbS thin films, Physics and Technology of Semiconductors, vol. 50, issue 1, pp. 51–54.

9. Gao F., Lu Q., Liu X., Yan Y., Zhao D. (2001) Controlled Synthesis of Semiconductor PbS Nanocrystals and Nanowires Inside Mesoporous Silica SBA-15 Phase, Nano Letters , vol. 1, no. 12, pp. 743–748.

10. Rodríguez C.A., Mera A.C., Pizarro-Castillo L., Ashfaq M., Sandoval-Paz M.G., Burgos M.J.C., Suárez S. (2021) Materials Science in Semiconductor Processing, no. 131, p. 105839.

11. Gunes S. et al. (2007) Solar Energy Mater. Solar Cells, 91, 420.

12. Abe S., Mochizukt K., Masumoto K., Nippon Kinroku. J. Jpn., ˙Inst. Met., 56, 1479.

13. Akhmetov N.S. (2001) General and Inorganic Chemistry. Higher. School, Ed. center Academy, Moscow, 743 p.

14. Liu Y.-C., Xiong Y., Lu D.-N. Appl. Surface Sci., 252, 8, 2960–2966, 2006

15. Yildirim A.K., Altiokka B. (2020) Emerg. Mater. Res., 9(1), 47.

16. Alekseeva G., et al., Semiconductors, 30 , p. 1125 View in Scopus Fiz Tverd Tela, 23 p. 2888

17. Crisp R.W., Kroupa D.M., Marshall A.R., Miller E.M., Zhang J., Beard M. C. Luther, J.M. Sci. Rep. 2015, 5, 9945.

18. Ekimov A., Efros A.L. and Onushchenko A. (2018) Solid state communications 88 947 5. Carroll G. M, Limpens R . and Neale N. R. Nano letters, 18 3118.

19. Huo N., Gupta, S., Konstantatos G. (2017) MoS2−HgTe Quantum Dot Hybrid Photodetectors beyond 2 μm. Adv. Mater., 29

20. Abdallah B., Hussein R., Al-Kafri N., Zetoun W. (2020) Iranian Journal of Science and Technology, vol. 6, issue 2, pp. 94–98.


Review

For citations:


Amirbekova G.S., Tolepov Zh.K., Guseinov N., Tulegenova M.A., Orynbai B.G., Koshtybayev T., Otarbay Zh. CONTROL OF THE SIZES OF LEAD SULFIDE (PBS) NANOPARTICLES BY PLASMA TREATMENT METHOD. Herald of the Kazakh-British technical university. 2024;21(2):266-272. https://doi.org/10.55452/1998-6688-2024-21-2-266-272

Views: 180


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)