Preview

Herald of the Kazakh-British technical university

Advanced search

NUMERICAL SOLUTION OF A BOUNDARY VALUE PROBLEM WITH A PARAMETER FOR IMPULSIVE LOADED DIFFERENTIAL EQUATIONS

https://doi.org/10.55452/1998-6688-2024-21-2-106-115

Abstract

The boundary value problem depending on the parameter for the system of impulsive loaded differential equations is considered. Algorithms of numerical realization of the Dzhumabaev parameterization method are developed for numerical solving of the studied boundary value problem depending on the parameter. Algorithms of numerical realization of the Dzhumabaev parameterization method are based on the solving of Cauchy problems for the system of ordinary differential equations. As a result of application of the proposed method, finding a solution to the boundary value problem depending on the parameter for impulsive loaded differential equations leads to finding a solution to the system of algebraic equations. This system of algebraic equations consists of a boundary condition and equalities with respect to the conditions at the impulsive points. Numerical results showing the high efficiency of the numerical implementation of the Dzhumabaev parameterization method are given. The result demonstrate that there is congruence between the numerical and the exact results to a high order of accuracy.

About the Authors

Zh. M. Кadirbayeva
Institute of Mathematics and Mathematical Modeling; International Information Technology University
Kazakhstan

Candidate of Physical and Mathematical Sciences, Associate Professor

050010, Almaty

050040, Almaty



S. M. Тemesheva
Institute of Mathematics and Mathematical Modeling; Al-Farabi Kazakh National University
Kazakhstan

Doctor of Physical and Mathematical Sciences, Associate Professor

050010, Almaty

050040, Almaty



B. B. Мinglibayeva
Institute of Mathematics and Mathematical Modeling;
Kazakhstan

Candidate of Physical and Mathematical Sciences

050010, Almaty



N. M. Shaimerden
Kazakh National Women's Teacher Training University
Kazakhstan

Master

050000, Almaty



References

1. Samoilenko A.M. and N.A. Perestyuk (1995) Impulsive Differential Equations, World Scientific, Singapore.

2. Bainov D. and P. Simenov (1993) Impulsive Differential Equations: Periodic Solutions and Applications, Part of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Sci. Tech. Harlow.

3. Lakshmikantham V., Bainov D.D. and P.S. Simenov (1989) Theory of Impulsive Differential Equations, World Scientific, Singapore. 4 Akhmetov M.U. and Zafer A. (2000) Appl.Math. Lett. 13, pp. 99–105 https://doi.org/10.1016/S0893-9659(00)00040-9.

4. Nieto J.J. and D. O’Regan, Nonlin. (2009). Anal.: Real World Appl. 10, pp. 680–690 https://doi.org/10.1016/j.nonrwa.2007.10.022.

5. Nakhushev A.M. (1982) Differ. Equat. 18, pp. 72–81.

6. Yuldashev T.K., Islomov B.I. and Alikulov E.K. (2020). Lobachevskii J.Math. 41, pp. 926–944. https://doi.org/10.1134/S1995080220050145.

7. Yuldashev T.K. and Abdullaev O.Kh. (2021) Lobachevskii J.Math. 42, pp. 1113–1123. https://doi.org/10.1134/S1995080221050218.

8. Abdullaev V.M. and Aida-zade K.R. (2014) Comput.Math. Math. Phys. 54, pp. 1096–1109. https://doi.org/10.1134/S0965542514070021.

9. Dzhenaliev M.T. (2001) Differ. Equat. 37, pp. 51–57.

10. Dzhumabaev D.S., Bakirova E.A. and Mynbayeva S.T. (2020). Math. Methods Appl. Sci. 4, pp.1788– 1802. https://doi.org/10.1002/mma.6003.

11. Assanova A.T., Imanchiyev A.E. and. Kadirbayeva Zh.M. (2018). Comput.Math. Math. Phys. 58, pp. 508–516. https://doi.org/10.1134/S096554251804005X.

12. Akhmetov M.U., Zafer A. and Sejilova R.D. Nonlin. (2002). Anal. 48, pp. 271–286. https://doi.org/10.1016/S0362-546X(00)00186-3.

13. Assanova A.T., Bakirova E.A., Kadirbayeva Zh.M. and Uteshova R.E. (2020) Comput. Appl. Math. 39, 248. https://doi.org/10.1007/s40314-020-01298-1.

14. Assanova A.T., Bakirova E.A. and Kadirbayeva Zh.M. (2020). Comput.Math. Math. Phys. 60, pp. 203–221. https://doi.org/10.1134/S0965542520020049.

15. Assanova A.T., Bakirova E.A. and Kadirbayeva Zh.M. (2021). Math. Model. Anal. 26, pp. 34–54. https://doi.org/10.3846/mma.2021.11977.

16. Minglibayeva B.B. and Assanova A.T. (2021). Lobachevskii J. Math. 42, pp. 587–597. https://doi.org/10.1134/S199508022103015X.

17. Dzhumabayev D.S. (1989). USSR Comput.Math. Math. Phys. 29, pp. 34–46.

18. Dzhumabaev D.S., J. (2016). Comput. Appl.Math. 294, pp. 342–357 http://dx.doi.org/10.1016/j.cam.2015.08.023.

19. Assanova A.T. and Kadirbayeva Zh.M. (2018). Comput. Appl. Math. 37, pp. 4966–4976. https://doi.org/10.1007/s40314-018-0611-9.

20. Temesheva S.M., Dzhumabaev D.S. and Kabdrakhova S.S. (2021). Lobachevskii journal of mathematics. 42, 606-612. https://doi.org/10.1134/S1995080221030173.

21. Kadirbayeva Zh.M. and Kabdrakhova S.S. (2022). Open Math. 20, pp. 1173–1183. https://doi.org/10.1515/math-2022-0496.

22. Kadirbayeva Zh.M., Kabdrakhova S.S. and Mynbayeva S.T. (2021). Lobachevskii J.Math. 42, pp. 3675–3683. https://doi.org/10.1134/S1995080222030131.

23. Bakirova E.A., Tleulesova A.B. and Kadirbayeva Zh.M. (2017). Bull. Karag. Univ.,Math. 87 (3), pp. 43–50.

24. Assanova A.T., Bakirova E.A. and Vassilina G.K. (2020). Analysis. 4, pp. 175–191 https://doi.org/10.1515/anly-2019-0021.


Review

For citations:


Кadirbayeva Zh.M., Тemesheva S.M., Мinglibayeva B.B., Shaimerden N.M. NUMERICAL SOLUTION OF A BOUNDARY VALUE PROBLEM WITH A PARAMETER FOR IMPULSIVE LOADED DIFFERENTIAL EQUATIONS. Herald of the Kazakh-British technical university. 2024;21(2):106-115. (In Kazakh) https://doi.org/10.55452/1998-6688-2024-21-2-106-115

Views: 216


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)