NUMERICAL SOLUTION OF A BOUNDARY VALUE PROBLEM WITH A PARAMETER FOR IMPULSIVE LOADED DIFFERENTIAL EQUATIONS
https://doi.org/10.55452/1998-6688-2024-21-2-106-115
Abstract
The boundary value problem depending on the parameter for the system of impulsive loaded differential equations is considered. Algorithms of numerical realization of the Dzhumabaev parameterization method are developed for numerical solving of the studied boundary value problem depending on the parameter. Algorithms of numerical realization of the Dzhumabaev parameterization method are based on the solving of Cauchy problems for the system of ordinary differential equations. As a result of application of the proposed method, finding a solution to the boundary value problem depending on the parameter for impulsive loaded differential equations leads to finding a solution to the system of algebraic equations. This system of algebraic equations consists of a boundary condition and equalities with respect to the conditions at the impulsive points. Numerical results showing the high efficiency of the numerical implementation of the Dzhumabaev parameterization method are given. The result demonstrate that there is congruence between the numerical and the exact results to a high order of accuracy.
Keywords
About the Authors
Zh. M. КadirbayevaKazakhstan
Candidate of Physical and Mathematical Sciences, Associate Professor
050010, Almaty
050040, Almaty
S. M. Тemesheva
Kazakhstan
Doctor of Physical and Mathematical Sciences, Associate Professor
050010, Almaty
050040, Almaty
B. B. Мinglibayeva
Kazakhstan
Candidate of Physical and Mathematical Sciences
050010, Almaty
N. M. Shaimerden
Kazakhstan
Master
050000, Almaty
References
1. Samoilenko A.M. and N.A. Perestyuk (1995) Impulsive Differential Equations, World Scientific, Singapore.
2. Bainov D. and P. Simenov (1993) Impulsive Differential Equations: Periodic Solutions and Applications, Part of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Sci. Tech. Harlow.
3. Lakshmikantham V., Bainov D.D. and P.S. Simenov (1989) Theory of Impulsive Differential Equations, World Scientific, Singapore. 4 Akhmetov M.U. and Zafer A. (2000) Appl.Math. Lett. 13, pp. 99–105 https://doi.org/10.1016/S0893-9659(00)00040-9.
4. Nieto J.J. and D. O’Regan, Nonlin. (2009). Anal.: Real World Appl. 10, pp. 680–690 https://doi.org/10.1016/j.nonrwa.2007.10.022.
5. Nakhushev A.M. (1982) Differ. Equat. 18, pp. 72–81.
6. Yuldashev T.K., Islomov B.I. and Alikulov E.K. (2020). Lobachevskii J.Math. 41, pp. 926–944. https://doi.org/10.1134/S1995080220050145.
7. Yuldashev T.K. and Abdullaev O.Kh. (2021) Lobachevskii J.Math. 42, pp. 1113–1123. https://doi.org/10.1134/S1995080221050218.
8. Abdullaev V.M. and Aida-zade K.R. (2014) Comput.Math. Math. Phys. 54, pp. 1096–1109. https://doi.org/10.1134/S0965542514070021.
9. Dzhenaliev M.T. (2001) Differ. Equat. 37, pp. 51–57.
10. Dzhumabaev D.S., Bakirova E.A. and Mynbayeva S.T. (2020). Math. Methods Appl. Sci. 4, pp.1788– 1802. https://doi.org/10.1002/mma.6003.
11. Assanova A.T., Imanchiyev A.E. and. Kadirbayeva Zh.M. (2018). Comput.Math. Math. Phys. 58, pp. 508–516. https://doi.org/10.1134/S096554251804005X.
12. Akhmetov M.U., Zafer A. and Sejilova R.D. Nonlin. (2002). Anal. 48, pp. 271–286. https://doi.org/10.1016/S0362-546X(00)00186-3.
13. Assanova A.T., Bakirova E.A., Kadirbayeva Zh.M. and Uteshova R.E. (2020) Comput. Appl. Math. 39, 248. https://doi.org/10.1007/s40314-020-01298-1.
14. Assanova A.T., Bakirova E.A. and Kadirbayeva Zh.M. (2020). Comput.Math. Math. Phys. 60, pp. 203–221. https://doi.org/10.1134/S0965542520020049.
15. Assanova A.T., Bakirova E.A. and Kadirbayeva Zh.M. (2021). Math. Model. Anal. 26, pp. 34–54. https://doi.org/10.3846/mma.2021.11977.
16. Minglibayeva B.B. and Assanova A.T. (2021). Lobachevskii J. Math. 42, pp. 587–597. https://doi.org/10.1134/S199508022103015X.
17. Dzhumabayev D.S. (1989). USSR Comput.Math. Math. Phys. 29, pp. 34–46.
18. Dzhumabaev D.S., J. (2016). Comput. Appl.Math. 294, pp. 342–357 http://dx.doi.org/10.1016/j.cam.2015.08.023.
19. Assanova A.T. and Kadirbayeva Zh.M. (2018). Comput. Appl. Math. 37, pp. 4966–4976. https://doi.org/10.1007/s40314-018-0611-9.
20. Temesheva S.M., Dzhumabaev D.S. and Kabdrakhova S.S. (2021). Lobachevskii journal of mathematics. 42, 606-612. https://doi.org/10.1134/S1995080221030173.
21. Kadirbayeva Zh.M. and Kabdrakhova S.S. (2022). Open Math. 20, pp. 1173–1183. https://doi.org/10.1515/math-2022-0496.
22. Kadirbayeva Zh.M., Kabdrakhova S.S. and Mynbayeva S.T. (2021). Lobachevskii J.Math. 42, pp. 3675–3683. https://doi.org/10.1134/S1995080222030131.
23. Bakirova E.A., Tleulesova A.B. and Kadirbayeva Zh.M. (2017). Bull. Karag. Univ.,Math. 87 (3), pp. 43–50.
24. Assanova A.T., Bakirova E.A. and Vassilina G.K. (2020). Analysis. 4, pp. 175–191 https://doi.org/10.1515/anly-2019-0021.
Review
For citations:
Кadirbayeva Zh.M., Тemesheva S.M., Мinglibayeva B.B., Shaimerden N.M. NUMERICAL SOLUTION OF A BOUNDARY VALUE PROBLEM WITH A PARAMETER FOR IMPULSIVE LOADED DIFFERENTIAL EQUATIONS. Herald of the Kazakh-British technical university. 2024;21(2):106-115. (In Kazakh) https://doi.org/10.55452/1998-6688-2024-21-2-106-115