Preview

Herald of the Kazakh-British Technical University

Advanced search

STUDY OF OPTICAL AND DYNAMIC PROPERTIES OF HYDROGEN PLASMA AT HIGH DENSITIES

https://doi.org/10.55452/1998-6688-2025-22-4-386-400

Abstract

This paper presents the results of a study of the optical properties of hydrogen, specifically the reflection and refraction coefficients of electromagnetic waves, with the permittivity of the substance described by the generalized Drude–Lorentz model. This paper examines the longitudinal and transverse spectra of microscopic ion current oscillations in hydrogen at various temperatures and densities, and analyzes the influence of electron exchange and correlation effects. The study was conducted using the effective interaction potential, taking into account a local field correction obtained from quantum Monte Carlo simulations. The use of accurate local field models, such as approximations based on quantum statistical calculations, allows for the reliable reproduction of the transport and optical properties of dense electron systems. In particular, taking into account the local field function leads to significant corrections in the calculations of optical and dynamic properties, which is critical for modeling hot dense matter, metallized plasma, and degenerate electron systems. In addition, the presence of an exact form of the local field function allows us to correctly describe the optical and dynamic properties of the plasma, including the reflection and absorption coefficients and natural oscillation modes.

About the Authors

S. Kodanova
Al-Farabi Kazakh National University
Kazakhstan

Cand. Phys.-Math. Sc., Professor

Almaty



M. Issanova
Al-Farabi Kazakh National University
Kazakhstan

PhD, Associate Professor

Almaty



N. Bastykova
Al-Farabi Kazakh National University
Kazakhstan

PhD, Associate Professor

Almaty



A. Kenzhebekova
Al-Farabi Kazakh National University
Kazakhstan

PhD, Senior Lecturer

Almaty



D. Hoffmann
Technical University of Darmstadt
Germany

D.Sc., Professor

Darmstadt



References

1. Lindl, J. Development of the indirect- drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas, 2, 3933–4024 (1995). https://doi.org/10.1063/1.871025.

2. Haan, S. W. et al. Design and modeling of ignition targets for the National Ignition Facility. Phys. Plasmas, 2, 2480–2487 (1995). https://doi.org/10.1063/1.871209.

3. Magro, W.R., Ceperley, D.M., Pierleoni, C., and Bernu, B. Molecular Dissociation in Hot, Dense Hydrogen. Phys. Rev. Lett., 76, 1240–1243 (1996). https://doi.org/10.1103/PhysRevLett.76.1240.

4. Weir, S.T., Mitchell, A.C., and Nellis, W.J. Metallization of Fluid Molecular Hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett., 76, 1860–1863 (1996). https://doi.org/10.1103/PhysRevLett.76.1860.

5. Celliers, P.M. et al. Shock-Induced Transformation of Liquid Deuterium into a Metallic Fluid. Phys. Rev. Lett., 84, 5564 (2000). https://doi.org/10.1103/PhysRevLett.84.5564.

6. Hu, S. X., Militzer, B., Goncharov, V.N., Skupsky, S. First-principles equation-of-state table of deuterium for inertial confinement fusion applications. Phys. Rev. B., 84, 224109 (2011). https://doi.org/10.1103/PhysRevB.84.224109.

7. Loubeyre, P., Brygoo, S., et. al. Extended data set for the equation of state of warm dense hydrogen isotopes. Phys. Rev. B., 86, 144115 (2012). https://doi.org/10.1103/PhysRevB.86.144115.

8. Holst, B., Redmer, R., Desjarlais, M.P. Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations. Phys. Rev. B., 77, 184201 (2008). https://doi.org/10.1103/PhysRevB.77.184201.

9. Lambert, F., Recoules, V., Decoster, A., Clérouin, J., Desjarlais, M. On the transport coefficients of hydrogen in the inertial confinement fusion regime. Phys. Plasmas, 18, 056306 (2011). https://doi.org/10.1063/1.3574902.

10. Li, D., Ping, Zh., Jun, Y. Quantum molecular dynamics simulations of the thermophysical properties of shocked liquid ammonia for pressures up to 1.3 TPa. The Journal of Chemical Physics, 139, 134505 (2013).https://doi.org/10.1063/1.4823744.

11. Dharma-wardana M.W.C. Electron-ion and ion-ion potentials for modeling warm dense matter: Applications to laser-heated or shock-compressed Al and Si. Physical Review E, 86, 036407 (2012). https://doi.org/10.1103/PhysRevE.86.036407.

12. Hu, S.X., Colins, L.S., et.al. First-principles opacity table of warm dense deuterium for inertialconfinement-fusion applications. Physical Review E, 102, 053209 (2014). https://doi.org/10.1103/PhysRevE.90.033111.

13. Moldabekov, Zh. A., Groth, S., Dornheim, T., Bonitz, M., Ramazanov, T.S. Ion potential in non-ideal dense quantum plasmas. Contrib. Plasma Phys., 57(10), 532 (2017). https://doi.org/10.1002/ctpp.201700109.

14. Moldabekov, Z., Schoof, T., Ludwig, P., Bonitz, M., Ramazanov, T. Statically screened ion potential and Bohm potential in a quantum plasma. Phys. Plasmas, 22(10), 102104 (2015). https://doi.org/10.1063/1.4932051.

15. Moldabekov, Zh. A., Ludwig, P., Joost, J.-P., Bonitz, M., Ramazanov, T.S. Dynamical Screening and Wake Effects in Classical, Quantum, and Ultrarelativistic Plasmas. Contrib. Plasma Phys., 55(2–3), 186 (2015). https://doi.org/10.1002/ctpp.201400105.

16. Moldabekov, Zh.A., Ludwig, P., Bonitz, M., Ramazanov, T.S. Theoretical foundations of quantum hydrodynamics for plasmas. Contrib. Plasma Phys., 56(5), 442 (2016). https://doi.org/10.1063/1.5003910.

17. Moldabekov, Zh.A., Amirov, S.M., Ludwig, P., Bonitz, M., Ramazanov, T.S. Effect of the dynamical collision frequency on quantum wakefields. Contrib. Plasma Phys., 59(4–5), e201800161 (2019). https://doi.org/10.1002/ctpp.201800161.

18. Bowen, C., Sugiyama, G. and Alder, B.J. Static dielectric response of the electron gas, Phys. Rev., 50, 14838 (1994). https://doi.org/10.1103/PhysRevB.50.14838.

19. Moroni, S., Ceperley, D.M. and Senatore, G. Static response from quantum Monte Carlo calculations, Phys. Rev., 69, 1837 (1992). https://doi.org/10.1103/PhysRevLett.69.1837.

20. Perdew, J.P. and Wang, Y. Pair-distribution function and its coupling-constant average for the spinpolarized electron gas, Phys. Rev., 46, 12947 (1992). https://doi.org/10.1103/PhysRevB.46.12947.

21. Ramazanov, T.S., Moldabekov, Zh.A., Gabdullin, M.T. Effective potentials of interactions and thermodynamic properties of a nonideal two-temperature dense plasma. Phys. Rev., 92, 023104 (2015). https://doi.org/10.1103/PhysRevE.92.023104.

22. Ramazanov, T.S., Moldabekov, Zh.A., Gabdullin, M.T. Multipole expansion in plasmas: Effective interaction potentials between compound particles. Phys. Rev., 93, 053204 (2016). https://doi.org/10.1103/PhysRevE.93.053204.

23. Moldabekov, Zh.A., Groth, S., Dornheim, T., Kählert, H., Bonitz, M., Ramazanov, T.S. Structural characteristics of strongly coupled ions in a dense quantum plasma. Phys. Rev., 98, 023207 (2018). https://doi.org/10.1103/PhysRevE.98.023207.

24. Moldabekov, Z.A., Dornheim, T., Bonitz, M. Screening of a test charge in a free-electron gas at warm dense matter and dense non-ideal plasma conditions. Contrib. Plasma Phys., e202000176 (2021). https://doi.org/10.1002/ctpp.202000176.

25. Arista, N.R. and Brandt W. Dielectric response of quantum plasmas in thermal equilibrium. Phys. Rev. A., 29, 1471–1480 (1984). https://doi.org/10.1103/PhysRevA.29.1471.

26. Dornheim, T., Vorberger, J., Groth, S., Hoffmann, N., Moldabekov, Zh.A., Bonitz, M. The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation. The Journal of Chemical Physics., 151, P. 194104 (2019). https://doi.org/10.1063/1.5123013.

27. Dornheim, T., Moldabekov, Zh.A., and Tolias, P. Analytical representation of the local field correction of the uniform electron gas within the effective static approximation. Phys. Rev. B., 103, 165102 (2021). https://doi.org/10.1103/PhysRevB.103.165102.

28. URL: https://github.com/ToDor90/LFC.

29. Moldabekov, Zh. A., and Dornheim, T., Bonitz, M. Screening of a test charge in a free-electron gas at warm dense matter and dense non-ideal plasma conditions. Contributions to Plasma Physics, 62, e202000176 (2022). https://doi.org/10.1002/ctpp.202000176.

30. Filinov, A.V., Bonitz, M., Ebeling, W.O. Improved Kelbg potential for correlated Coulomb systems. Journal of Physics A: Mathematical and Theoretical, 36(22), 5957 (2003). https://doi.org/:10.1088/03054470/36/22/317.

31. Nadine Wetta N., Pain, J. Consistent approach for electrical resistivity within Ziman’s theory from solid state to hot dense plasma: Application to aluminum. Physical Review E, 90, 033111 (2020). https://doi.org/10.1103/PhysRevE.102.053209.

32. Lorazo, P., Lewis, L.J., Meunier, M. Short-Pulse Laser Ablation of Solids: From Phase Explosion to Fragmentation. Phys.Rev.Lett., 91, 225502 (2003). https://doi.org/10.1007/s003390000686.

33. Faussurier, G., Blancard, C. Resistivity saturation in warm dense matter. Phys Rev E. Stat Nonlin Soft Matter Phys., 91(1), 013105 (2015). https://doi.org/10.1103/PhysRevE.91.013105.

34. Pain, J.C., Dejongh, G. Electrical Resistivity in Warm Dense Plasmas Beyond the Average-Atom Model. Contrib. Plasma Phys., 50, 39–45 (2010). https://doi.org/10.1002/ctpp.201010010.

35. Ziman, J.M. A theory of the electrical properties of liquid metals. I: The monovalent metals. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 6(68), 1013–1034 (1961). https://doi.org/10.1080/14786436108243361.

36. Collins, L.A., Bickham, S.R., Kress, J.D., Mazevet, S., Lenosky, T.J., Troullier, N.J., and Windl W. Dynamical and optical properties of warm dense hydrogen. Phys. Rev. B, 63, 184110 (2001). https://doi.org/10.1103/PhysRevB.63.184110.


Review

For citations:


Kodanova S., Issanova M., Bastykova N., Kenzhebekova A., Hoffmann D. STUDY OF OPTICAL AND DYNAMIC PROPERTIES OF HYDROGEN PLASMA AT HIGH DENSITIES. Herald of the Kazakh-British Technical University. 2025;22(4):386-400. (In Russ.) https://doi.org/10.55452/1998-6688-2025-22-4-386-400

Views: 77

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)