EFFECT OF IONIC CORE ON THE PROPERTIES OF NON-ISOTHERMAL PLASMAS
https://doi.org/10.55452/1998-6688-2025-22-4-354-364
Abstract
This study investigates the effects of ionic cores on non-isothermal plasmas using a novel ion-ion interaction potential that incorporates screening effects from both ion cores and exchange-correlation interactions. Our findings indicate that with increasing distance, the effective potential approaches a Yukawa-like screening potential, while at shorter distances, strong electron binding weakens screening. The different values of the cutoff radius and core edge steepness significantly influence the potential behavior and radial distribution functions (RDFs). Higher coupling parameters ( ) strengthen the electron-ion interactions, leading to deeper potential wells and more pronounced non-ideality corrections. Increasing decreases the absolute values of non-ideality corrections, indicating fewer interactions in the system. A larger cutoff radius at a fixed parameter also reduces corrections due to weaker screening effects. As increases, non-ideality corrections grow, reflecting stronger coupling. The results show the importance of taking into account the ion core effects in dense non-isothermal plasma research.
About the Authors
T. N. IsmagambetovaKazakhstan
PhD, Senior Lector
Almaty
M. M. Muratov
Kazakhstan
PhD, Associate Professor
Almaty
Y. A. Ussenov
United States
PhD, Associate Research Physicist
Princeton, NJ
M. T. Gabdullin
Kazakhstan
PhD, Cand.Phys.-Math.Sc., Professor
Almaty
References
1. Lifshitz, E.M., and Pitaevskii, L.P. Fizicheskaya Kinetika [Physical Kinetics] (Moscow: Physmathlit, 2002), pp. 96–97. (in Russian).
2. Ecker, G. Theory of Fully Ionized Plasmas (New York: Academic Press, 1972), pp. 132–134.
3. Ramazanov, T.S., Dzhumagulova, K.N., and Gabdullin, M.T. Effective Potentials for Ion-Ion and Charge-Atom Interactions of Dense Semiclassical Plasma. Physics of Plasmas, 17(4), 042703 (2010). https://doi.org/10.1063/1.3381078.
4. Ismagambetova, T.N., Moldabekov, Z.A., Amirov, S.M., et al. Dense Plasmas With Partially Degenerate Semiclassical Ions: Screening and Structural Properties. Japanese Journal of Applied Physics, 59, SHHA10 (2020). https://doi.org/10.35848/1347-4065/ab75b5.
5. Ramazanov, T.S., Dzhumagulova, K.N., and Moldabekov, Z.A. Generalized Pair Potential Between Charged Particles in Dense Semiclassical Plasma. Physical Sciences and Technology, 1(1), 48–54 (2018). https://doi.org/10.26577/phst-2014-1-114.
6. Ramazanov, T.S., Dzhumagulova, K.N., Gabdullin, M.T., Moldabekov, Z.A., and Ismagambetova, T.N. Development of Effective Potentials for Complex Plasmas. Physical Sciences and Technology, 6(3–4), 44–53 (2019). https://doi.org/10.26577/phst-2019-2-p6.
7. Ramazanov, T., and Moldabekov, Z. Dynamical collision frequency and conductivity of dense plasmas. Physical Sciences and Technology, 2(2), 53–57 (2016). https://doi.org/10.26577/2409-6121-2015-2-2-53-57.
8. Ramazanov, T.S., Kodanova, S.K., Issanova, M.K., Orazbayev, S.A., and Yelubaev, D.Ye. Temperature anisotropy relaxation processes in dense plasma. Recent Contributions to Physics, 75(4), 30–36 (2020). https://doi.org/10.26577/RCPh.2020.v75.i4.04
9. Pines, D., and Nozieres, P. The Theory of Quantum Liquids (New York: Benjamin, 1966), pp. 277–278.
10. Ashcroft, N.W., and Stroud, D. Theory of the Thermodynamics of Simple Liquid Metals. Solid State Physics, 33, 1–81 (1977). https://doi.org/10.1016/S0081-1947(08)60468-3.
11. Ashcroft, W., and Mermin, N.D. Solid State Physics (Philadelphia: Saunders College Publishing, 1976), p. 764.
12. Ramazanov, T.S., Kodanova, S.K., Nurusheva, M.M., Issanova, M.K. Ion core effect on scattering processes in dense plasmas. Phys. Plasmas, 28, 092702 (2021). https://doi.org/10.1063/5.0059297.
13. Ramazanov, T.S., Issanova, M.K., Aldakul, Y.K., Kodanova, S.K. Ion core effect on transport characteristics in warm dense matter. Phys. Plasmas, 29, 112706 (2022). https://doi.org/10.1063/5.0102528.
14. Ramazanov, T.S., Kodanova, S.K., Issanova, M.K., Kenzhegulov, B.Z. Influence of the ion core on relaxation processes in dense plasmas. Contrib. Plasma Phys. 64, e202300127 (2024). https://doi.org/10.1002/ctpp.202300127.
15. Ismagambetova, T.N., Muratov, M.M., Gabdullin, M.T., and Ramazanov, T.S. Influence of Ion Core on Structural and Thermodynamic Properties of Dense Plasma. Contributions to Plasma Physics, e70034 (2025). https://doi.org/10.1002/ctpp.70034.
16. Ismagambetova, T., Muratov, M., et al. The Influence of the Ionic Core on Structural and Thermodynamic Properties of Dense Plasmas. Plasma, 7(4), 858–866 (2024). https://doi.org/10.3390/plasma7040046.
17. Hansen, J.-P., McDonald, I.R. Theory of Simple Liquids (London, UK: Academic Press, 2000), pp. 100–102.
18. Gericke, D.O., Vorberger, J., et al. Screening of ionic cores in partially ionized plasmas within linear response. Phys. Rev. E, 81, 065401 (2010). https://doi.org/10.1103/PhysRevE.81.065401.
19. Moldabekov, Z.A., Dornheim, T. et al. Screening of a test charge in a free-electron gas at warm dense matter and dense non-ideal plasma conditions. Contrib. Plasma Phys., 62(2), e202000176 (2022). https://doi.org/10.1002/ctpp.202000176.
20. Moldabekov, Z.A., Groth, S., et al. Structural characteristics of strongly coupled ions in a dense quantum plasma. Phys Rev E, 98(2–1), 023207 (2018). https://doi.org/10.1103/PhysRevE.98.023207.
21. Groth, S., Dornheim, T., et al. Ab initio Exchange-Correlation Free Energy of the Uniform Electron Gas at Warm Dense Matter Conditions. Phys. Rev. Lett., 119, 135001 (2017). https://doi.org/10.1103/PhysRevLett.119.135001.
22. Bredow, R., Bornath, T., Kraeft, W.-D., and Redmer, R. Hypernetted Chain Calculations for MultiComponent and Non-Equilibrium Plasmas. Contributions to Plasma Physics, 53, 276–284 (2013). https://doi.org/10.1002/ctpp.201200117.
23. Kittel, C. Introduction to Solid State Physics, 8th Ed. (New York, USA: John Wiley and Sons, 2005), p. 696.
24. Springer, J.F., Pokrant, M.A., et al. Integral equation solutions for the classical electron gas. J. Chem. Phys., 58(11), 4863–4867 (1973). https://doi.org/10.1063/1.1679070.
25. Ng, K.-C. Hypernetted chain solutions for the classical one‐component plasma up to Γ=7000. J. Chem. Phys., 61(7), 2680–2689 (1974). https://doi.org/10.1063/1.1682399.
26. Ramazanov, T.S., Ismagambetova, T.N., et al. The Influence of the Effects of the Bound Electrons on the Ion Structural and Thermodynamic Properties. IEEE Trans. Plasma Sci., 51(5), 1208–1211 (2023). https://doi.org/10.1109/TPS.2023.3267845.
27. Isihara, A. Statistical physics (New York, United States: Academic Press, 1971), p. 287.
Review
For citations:
Ismagambetova T.N., Muratov M.M., Ussenov Y.A., Gabdullin M.T. EFFECT OF IONIC CORE ON THE PROPERTIES OF NON-ISOTHERMAL PLASMAS. Herald of the Kazakh-British Technical University. 2025;22(4):354-364. https://doi.org/10.55452/1998-6688-2025-22-4-354-364
JATS XML






