Preview

Herald of the Kazakh-British Technical University

Advanced search

ON THE DIFFUSION LAYER GENERATION METHOD

https://doi.org/10.55452/1998-6688-2025-22-4-131-142

Abstract

This paper presents an automated method for generating the parameters of linear functions used in the diffusion layer of block symmetric encryption algorithms. The focus is on designing linear layers constructed solely from cyclic shift operations and bitwise XORs, which are both efficient and hardware-friendly. Such layers play a critical role in achieving strong diffusion, a fundamental cryptographic requirement. The proposed method evaluates candidate configurations by exhaustively enumerating shift values, calculating their branch number, and assessing their avalanche characteristics. A set of quantitative diffusion metrics is introduced to guide the selection process, including single- and multi-round avalanche effects and activation rates at the byte level. An aggregated quality function is formulated to allow comparative assessment. The developed software tool identified optimal shift parameters for 128-bit blocks processed as four 32-bit words, achieving a branch number of 5 with only 12 XOR operations. The proposed approach contributes to the practical synthesis of lightweight and secure cryptographic primitives suitable for both classical and constrained platforms.

About the Authors

L. V. Gorlov
Al-Farabi Kazakh National University
Kazakhstan

PhD student

Almaty



N. A. Seilova
International University of Information Technologies
Kazakhstan

Cand. Tech. Sc., Associate Professor

Almaty



T. A. Okhrimenko
National Aviation University
Ukraine

Cand. Tech. Sc., Associate Professor

Kiev



References

1. Gorlov, L. Iavich, M. and Bocu, R. Linear Layer Architecture Based on Cyclic Shift and XOR. Symmetry, 15, (2023).

2. Debranjan Pal, Vishal Pankaj Chandratreya, Abhijit Das, Dipanwita Roy Chowdhury. Modeling Linear and Non-linear Layers: An MILP Approach Towards Finding Differential and Impossible Differential Propagations, arXiv:2405.00441 (2024).

3. Daemen, J. and Rijmen, V. The wide trail design strategy. In Proceedings of the Cryptography and Coding: 8th IMA International, 2001, pp. 222–238.

4. Wikipedia. Word (computer architecture). URL: https://en.wikipedia.org/wiki/Word_(computer_ architecture).

5. Daemen, J. and Rijmen, V. The Design of Rijndael. Springer, 2002.

6. Nir, Y. and Langley, A. ChaCha20 and Poly1305 for IETF Protocols. RFC 7539, (2018). URL: https://datatracker.ietf.org/doc/html/rfc7539. [Accessed 9.05. 2025].

7. Joshi, D. A Note on Upper Bounds for Minimum Distance Codes. Information and Control, 1(3), p. 289–295 (1958).

8. Shannon, C. Mathematical Theory of Cryptography, Bell Labs (1945).

9. Shannon, C. Communication Theory of Secrecy Systems, Bell System Tech. J. (1949).

10. Wu, S., Wang, M., and Wu, W. Design of lightweight linear diffusion layers from near-MDS matrices. International Association for Cryptologic Research. URL: https://eprint.iacr.org/2017/195.pdf. [Accessed 9.05.2025].

11. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., and Biryukov, A. Design Strategies for ARX with Provable Bounds: SPARX and LAX. Advances in Cryptology – ASIACRYPT 2016, pp. 484– 513 (2016).

12. Biham, E. and Shamir, A. Differential Cryptanalysis of DES-like Cryptosystems. J. Cryptology (1991).

13. Guo, Z., Liu, R., Wu, W. and Lin, D. Direct Construction of Lightweight Rotational-XOR MDS Diffusion Layers, International Association for Cryptologic Research, 2016. URL: https://ia.cr/2016/1036. [Accessed 9. 05.2025].

14. Guo, Z., Liu, R., Gao, S., Wu, W. and Lin, D. Direct Construction of Optimal Rotational-XOR Diffusion Primitives, p. 169–187 (2017).

15. Ray, B., Douglas, S., Jason, S., Stefan, T.C., Bryan, W. and Louis, W. The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptol. ePrint Arch., 2013. [Online]. URL: https://ia.cr/2013/404. [Accessed 9. 05.2025].

16. FIPS. Federal Information Processing Standards Publication 197. Specification for the Advanced Encryption Standard (AES) (2001). URL: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. [Accessed 9.05.2025].

17. Matsui, M. Linear Cryptanalysis Method for DES Cipher., EUROCRYPT (1993).

18. Nyberg, K. Perfect Nonlinear S-Boxes., EUROCRYPT (1991).

19. Schneier, B. Applied Cryptography, Wiley (1996).

20. Vaudenay., S. On the Need for Multipermutations., FSE (2001).

21. Panasenko, S. Algoritmy shifrovanija, BHV-Peterburg (2009).

22. Derkach, A. Perevіrka model'nih pripushhen' u kriptoanalіzі ARX-shifrіv, Vіsnik NTUU «KPІ». Serіja: Matematichne modeljuvannja v dizajnі ta ekonomіcі, 2, 231–236 (2020).

23. Tian, Yu. & Feng, Xiutao & Li, Guangrong. On the construction of ultra-light MDS matrices, 10.48550/arXiv.2409.03298, 2024.

24. Gupta, Kishan & Kumar Pandey, Sumit & Samanta, Susanta. On the Construction of Near-MDS Matrices, 10.48550/arXiv.2306.12791, 2023.

25. Al-Nofaie, S.M., Sharaf, S., & Molla, R. Design Trends and Comparative Analysis of Lightweight Block Ciphers for IoTs, Applied Sciences, 15(14), 7740 (2025).

26. Konstantopoulou, Evangelia and Athanasiou, George and Sklavos, Nicolas. Review and Analysis of FPGA and ASIC Implementations of NIST Lightweight Cryptography Finalists, ACM Comput. Surv., 57, 10 (2025).

27. Shi Wang, Yuan Chen, Yunqing Li, Xiangyong Zeng. On construction of lightweight MDS matrices, Advances in Mathematics of Communications, 16(4) (2022).

28. Gupta, Kishan & Kumar Pandey, Sumit & Samanta, Susanta. On the Direct Construction of MDS and Near-MDS Matrices, 10.48550/arXiv.2306.12848, 2023.

29. Yogesh Kumar, Prasanna Raghaw Mishra, Susanta Samanta, Kishan Chand Gupta, Atul Gaur. Construction of all MDS and involutory MDS matrices Advances in Mathematics of Communications, 19(3), 922–941 (2025).

30. Samanta, S. On the counting of involutory MDS matrices. Cryptography and Communications, 2024.

31. Gaëtan Leurent and Clara Pernot. Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation. Cryptology ePrint Archive, Paper 2023/1803, 2023.

32. Rishakani, A.M. Cryptographic Properties of Cyclic Binary Matrices. Advances in Mathematics of Communications, 2019.

33. Luong, Tran & Long, Nguyen & Vo, Bay. Efficient implementation of the linear layer of block ciphers with large MDS matrices based on a new lookup table technique, PLOS ONE, 19 (2024).

34. Dobraunig, Christoph & Eichlseder, Maria & Mendel, Florian & Schläffer, Martin, Ascon v1.2: Lightweight Authenticated Encryption and Hashing. Journal of Cryptology, 34 (2021).

35. Leurent, G., & Pernot, C. Design of a Linear Layer Optimised for Bitsliced 32-bit Implementation, IACR Transactions on Symmetric Cryptology, 1, 441–458 (2024).

36. Mishra, P.R., Kumar, Y., Samanta, S., Gaur, A. A New Algorithm for Computing Branch Number of Non-Singular Matrices Over Finite Fields, Security and Cryptography for Networks. SCN 2024. Lecture Notes in Computer Science, 14974 (2024).

37. Huck Bennett, Mahdi Cheraghchi, Venkatesan Guruswami & Jo˜ao Ribeiro. Parameterized Inapproximability of the Minimum Distance Problem over all Fields and the Shortest Vector Problem in all ℓp Norms, SIAM Journal on Computing, 53 (2024).

38. Vijay Bhattiprolu, Venkatesan Guruswami, Xuandi Ren, PCP-free APX-Hardness of Nearest Codeword and Minimum Distance, arXiv:2503, 11131 (2025).

39. Tian, Y., Feng, X., & Li, G. On the construction of ultra-light MDS matrices. arXiv preprint (2024).

40. Kurt Pehlivanoğlu, Meltem & Demir, Mehmet Ali. Optimizing implementations of linear layers using two and higher input XOR gates. PeerJ Computer Science, 10 (2024).


Review

For citations:


Gorlov L.V., Seilova N.A., Okhrimenko T.A. ON THE DIFFUSION LAYER GENERATION METHOD. Herald of the Kazakh-British Technical University. 2025;22(4):131-142. https://doi.org/10.55452/1998-6688-2025-22-4-131-142

Views: 116

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)