EFFICIENCY OF CALCULATION OF THE WATTMETROGRAM OF THE ROD PUMP UNIT DRIVE FOR OPTIMIZING BALANCING MODES
https://doi.org/10.55452/1998-6688-2025-22-3-324-339
Abstract
The problem of optimizing oil production has always been one of the most pressing. The article is focused on the problem of improving the energy efficiency and optimizing the operating modes of this unit for oil production using rod pumping units (SHS). The article pays special attention to accounting for a decrease in the level of oil in the well, which affects the hydrostatic pressure and the load on the pump. The results of kinematic and kinetostatic analyzes of the transforming mechanism of the rod pump unit Drive are obtained. Based on the same results, the wattmetrogram was calculated. With its help, it allows not only to control energy consumption, but also to finetune the balance mechanisms and drive systems to increase the overall efficiency and identify its weaknesses. The decrease in the oil level reduces the overall load and, accordingly, we see that the amplitude of the wattmetrogram decreases. The oil dynamogram adds dynamic vibrations to the load, complicating the power profile. Together, the two factors make the reports more realistic, which is important for the correct selection and adjustment of counterweights, engine power, and optimization of the operation of the MSS. The results in the article are obtained taking into account the characteristics of the Electromotive and reducer used in the straight-line guide converter mechanism of a Class II quadruple drive of a specific SHS unbalanced drive.
About the Authors
N. S. ImanbayevaKazakhstan
Cand.Tech.Sc.
Almaty
A. A. Tynyshtikov
Kazakhstan
Master’s student
Almaty
M. M. Mussayev
Kazakhstan
Master’s student
Almaty
S. Zh. Tattimbetova
Kazakhstan
Teacher
Almaty
R. S. Algozhayeva
Kazakhstan
Senior lecturer
Almaty
References
1. Malyar A., Ceslik S. Raschet protsessov v elektroprivode shtangovogo nasosnogo agregata s kompensatsiyey reaktivnoy moshchnosti. Energies (2023). https://doi.org/10.3390/en16237782. [in Russian].
2. Urazakov K.R., Molchanova V.A., Tugunov P.M. Metod rascheta dinamicheskikh nagruzok i energopotrebleniya shtangovoy ustanovki s sistemoy avtomaticheskogo uravnoveshivaniya. Journal of Mining Institute (2020). https://doi.org/10.31897/PMI.2020.6.6. [in Russian].
3. Zyuzyev A.M., Tekle S.I. Dinamicheskiye simulyatory v zadachakh diagnostiki shtangovykh glubinnonasosnykh ustanovok. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov (2022). URL: https://cyberleninka.ru/article/n/dinamicheskie-simulyatory-v-zadachah-diagnostiki-shtangovyhglubinno-nasosnyh-ustanovok. [in Russian].
4. Molchanov A.G., Pevnev V.G., Tarasov K.V. Gidravlicheskiy privod shtangovogo skvazhinogo nasosa s inertsionnym uravnoveshivaniem. NEFTEGAS.info (2023). URL: https://cyberleninka.ru/article/n/gidravlicheskiy-privod-shtangovogo-skvazhinnogo-nasosa-s-inertsionnym-uravnoveshivaniem. [in Russian].
5. Yashin A.N., Khakimyanov M.I. Uravnoveshennost’ ustanovok skvazhinnykh shtangovykh nasosov na osnove analiza vattmetrogramm. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov (2021). URL: https://cyberleninka.ru/article/n/uravnoveshennost-ustanovok-skvazhinnyhshtangovyh-nasosov-na-osnove-analiza-vattmetrogramm. [in Russian].
6. Koshkin A.A. Obzor privodov shtangovogo skvazhinogo nasosa. Permskiy gosudarstvennyy tekhnicheskiy universitet (2022). URL: https://cyberleninka.ru/article/n/obzor-privodov-shtangovogoskvazhinnogo-nasosa. [in Russian].
7. Ivanovskiy V.N., Sabirov A.A., Dolov T.R., Shaykhulov R.M., Orlova E.A. Rezul’taty stendovykh issledovaniy raboty skvazhinogo shtangovogo nasosa v oslozhnennykh usloviyakh ekspluatatsii. Nauchnotekhnicheskiy zhurnal (2022). https://doi.org/10.33285/1999-6934-2022-5(131)-49-56. [in Russian].
8. Takacs G. Kriticheskiy analiz usloviy pitaniya v sistemakh shtangovykh nasosov. Journal of Petroleum Science and Engineering (2022). https://doi.org/10.1016/j.petrol.2021.110061. [in Russian].
9. Ahmedov B., Hajiyev A. Otsenka dinamicheskikh sil v novoy konstruktsii bezbalansirnykh shtangovykh nasosnykh ustanovok. Nafta-Gaz (2020). https://doi.org/10.18668/NG.2020.05.03. [in Russian].
10. Gao Zhi-Wei, Jia Shifeng. Modelirovaniye i upravleniye dlya nasosnykh ustanovok: obzor. Processes (2024). https://doi.org/10.3390/pr12071468. [in Russian].
11. Mardashpin I.I., Vafin I.Z. Stanok-kachalka : pat. RU 184533 U1 Rossiyskaya Federatsiya. No. 184533; opubl. 2018. [in Russian].
12. Denikin E.I. Stanok-kachalka dlya dobychi nefti: pat. RU 216643 U1 Rossiyskaya Federatsiya. No. 216643; opubl. 2023. [in Russian].
13. Denikin E.I. Stanok-kachalka dlya dobychi nefti: pat. RU 212382 U1 Rossiyskaya Federatsiya. No. 212382; opubl. 2022. [in Russian].
14. Yarullin A.G., Karimov R.R., Mutagirov R.Sh., Savel’ev E.N., Viskovatyh E.N., Yakovlev R.R. Stanok-kachalka modernizirovannyy: pat. RU 2747068 C1 Rossiyskaya Federatsiya. No. 2747068; opubl. 2021. [in Russian].
15. Akhtyamov E.M., Osnos V.B., Asylgaraeva A.Sh. Natyazhitel’ remney avtomaticheskiy dlya stankovkachalok: pat. RU 2721066 C1 Rossiyskaya Federatsiya. No. 2721066; opubl. 2020. [in Russian]
Review
For citations:
Imanbayeva N.S., Tynyshtikov A.A., Mussayev M.M., Tattimbetova S.Zh., Algozhayeva R.S. EFFICIENCY OF CALCULATION OF THE WATTMETROGRAM OF THE ROD PUMP UNIT DRIVE FOR OPTIMIZING BALANCING MODES. Herald of the Kazakh-British Technical University. 2025;22(3):324-339. (In Kazakh) https://doi.org/10.55452/1998-6688-2025-22-3-324-339