SYNTHESIS AND TRIBOLOGICAL PROPERTIES OF GRAPHENE NANOSTRUCTURES FOR USE IN SPACE TECHNOLOGY
https://doi.org/10.55452/1998-6688-2025-22-3-313-323
Abstract
The synthesis of graphene nanostructures and their tribological properties for applications in space technologies are discussed in this article. The results of experiments on graphene synthesis using the chemical vapor deposition (CVD) method are presented. A series of experiments aimed at determining the optimal technological parameters for obtaining high-quality graphene identified the optimal synthesis conditions: temperature (1000 °C) and gas ratio (0.5/200 cm³/min). The scanning electron microscopy (SEM) results confirm the high quality of the synthesized nanostructures and their uniform distribution. Raman spectroscopy, performed to assess the quality of the nanostructures, established that the synthesized nanostructures are graphene with an I2D/IG ratio of 1.89. The analysis showed that the obtained graphene has a monolayer structure. Tribological experiments demonstrated that the graphene coating significantly reduces the coefficient of friction compared to conventional steel. The obtained results confirmed the high efficiency of the graphene coating both when using lubricants and under dry friction conditions. This opens up opportunities for improving the performance of tribological systems and extending their service life. Further research will focus on improving synthesis methods and evaluating the strength characteristics of graphene nanostructures under space operation conditions.
About the Authors
Zh. T. NakysbekovKazakhstan
PhD
Almaty
B. E. Zhumadilov
Kazakhstan
Master's degree
Almaty
G. Partizan
Kazakhstan
PhD
Almaty
D. V. Ismailov
Kazakhstan
PhD
Almaty
V. F. Grishchenko
Kazakhstan
Cand.Phys.-Math.Sc.
Almaty
G. S. Suyundykova
Kazakhstan
Master's degree
Almaty
B. S. Medyanova
Kazakhstan
Master's degree
Almaty
B. A. Aliyev
Kazakhstan
Dr.Phys.-Math.Sc.
Almaty
L. Meirkhan
Kazakhstan
Master's degree
Astana
References
1. Ghidini, T. Materials for Space Exploration and Settlement. Nat. Mater., 17, 846–850 (2018).
2. Chaitanya Giri, T., Steele, A., Fries, M. Evidence for protosolar graphene in Allende and QUE 94366 CV3 meteorites. Planet. Space Sci. 2021, 203.
3. Merino, P., Svec, M., Martinez, J.I., Jelinek, P., Lacovig, P., Dalmiglio, M., Lizzit, S., Soukiassian, P., Cernicharo, J., Martin-Gago, J.A. Graphene etching on SiC grains as a path to interstellar polycyclic aromatic hydrocarbons formation. Nat. Commun., 5, 3054 (2014).
4. Chen, X.H., Li, A., Zhang, K. On graphene in the interstellar medium. Astrophys. J., 850, 104 (2017).
5. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A. Discover of graphene: Electric field effect in atomically thin carbon films. Science, 306, 666–669 (2004).
6. Bhuyan, M.S.A., Uddin, M.N., Islam, M.M., Bipasha, F.A., Hossain, S.S. Synthesis of graphene. Int. Nano Lett., 6, 65–83 (2016).
7. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.A., Zhang, Y., Dubonos, S. V., Grigorieva, I.V., Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 306, 666-669 (2004).
8. Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y.P., Pei, S.-S., Siriponglert, S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett., 93, 113103 (2020).
9. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett., 9, 3087 (2018).
10. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706-710 (2009).
11. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324, 1312-1314 (2009).
12. Partizan G. et al 2016 Mater. Res. Express 3 115010.
13. Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett., 97, 187401 (2006).
14. Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A., Dresselhaus, M.S. Raman spectroscopy of graphene and carbon nanotubes. http://www.tandfonline.com/ loi/tadp20.
15. Nguyen, V.T., Le, H.D., Nguyen, V.C., Ngo, T.T.T., Le, D.Q., Nguyen, X.N. and Phan, N.M. Synthesis of multi-layer graphene films on copper tape by atmospheric pressure chemical vapor deposition method. Adv. Nat. Sci.: Nanosci. Nanotechnol, 4, 035012 (5pp) (2013).
16. Ren, Y., Zhu, C., et. al. An improved method for transferring grapheme grown by chemical vapor deposition. Brief Reports and Reviews., 7 (1), 1150001 (6 pp) (2012).
17. Berman, D., Erdemir, A., Sumant, A.V. Graphene: A new emerging lubricant. Materials Today, 18 (5), 253–264 (2015).
18. Li, H., Xu, T., Zhang, Z. Wear resistance and frictional properties of graphene-based coatings under different conditions. Wear, 452, 203–211 (2020).
19. Song, H., Wang, X., Zhou, F. Solid lubricants: Recent developments and applications. Tribology International, 129, 333–344 (2018).
20. Fang, L., Cui, Z., Wang, W. Lubrication performance of graphene as a lubricant additive. Wear, 384, 119–123 (2017).
Review
For citations:
Nakysbekov Zh.T., Zhumadilov B.E., Partizan G., Ismailov D.V., Grishchenko V.F., Suyundykova G.S., Medyanova B.S., Aliyev B.A., Meirkhan L. SYNTHESIS AND TRIBOLOGICAL PROPERTIES OF GRAPHENE NANOSTRUCTURES FOR USE IN SPACE TECHNOLOGY. Herald of the Kazakh-British Technical University. 2025;22(3):313-323. (In Kazakh) https://doi.org/10.55452/1998-6688-2025-22-3-313-323