ON THE TECHNOLOGY OF SYNTHESIS OF HYDROGENATED DIAMOND-LIKE THIN FILMS BY ION-PLASMA METHOD
https://doi.org/10.55452/1998-6688-2025-22-2-322-332
Abstract
This work presents the synthesis of hydrogenated amorphous diamond-like carbon (HDLC) films using a magnetron method in a gas mixture of CH4+Ar. The synthesis of the HDLC films was carried out over a wide temperature range from 80 °C to 240 °C. The local structure of the synthesized samples was studied using Raman spectroscopy. Additionally, the mechanical and optical properties of the obtained thin diamond-like carbon films were investigated. The dependence of the studied characteristics on the synthesis conditions was demonstrated. It was found that the substrate temperature significantly influences the formation of the structure and properties of hydrogenated diamond-like carbon films. The dependence of the bandgap on the substrate temperature was shown. It was revealed that the bandgap of the synthesized hydrogenated samples decreases from 1.78 eV to 1.63 eV as the temperature increases from 80°C to 240°C. This can be attributed to the increase in sp² hybridized bonds and the growth of π-electron density states. It was also shown that the change in microhardness of hydrogenated diamondlike carbon films correlates with the change in optical bandgap. Microhardness, evaluated using the Knoop method, was found to range from 37.5×10² kgf/mm² to 29.5×10² kgf/mm², depending on the substrate temperature. This change in microhardness confirms the decrease in sp³ hybridized bonds in the film structure.
About the Authors
A. P. RyaguzovKazakhstan
Cand. Phys.-Math. Sc., Chief Researcher
Almaty
A. R. Assembayeva
Kazakhstan
PhD, Senior Lecturer
Almaty
N. R. Guseinov
Kazakhstan
Master
Almaty
F. Bekmurat
Kazakhstan
Master
Almaty
References
1. Biswas H.S., Sharma R., Kumar V., et al. Nanomaterials and Energy 12, 160–165 (2023).
2. Dwivedi N., et al. Materials Chemistry and Physics 262, 124316 (2021). https://doi.org/10.1016/j.matchemphys.2021.124316.
3. Ohtake N., Tanaka T., Ishikawa Y., et al. Materials 14, 315 (2021).
4. Yamamoto S., Nonaka T. Thin Solid Films 736, 138912 (2021).
5. Shi B., Zhang L., Wang Q., et al. Materials Science and Technology 38, 1151–1167 (2022).
6. Tillmann W., Schmitz H., Müller R., et al. Diamond and Related Materials 123, 108866 (2022).
7. Osanai H., et al. Thin Solid Films 745, 139100 (2022). https://doi.org/10.1016/j.tsf.2022.139100.
8. Zhao Z., Li X., Wang Y., et al. Optics Express 28, 15573-15586 (2020).
9. Morichetti F., Frontiers in Photonics 4, 1336510 (2024).
10. Lu Y., Chen F., Li Z., et al. Journal of Materials Science 57, 3971–3992 (2022).
11. Wiseman C., Patel R., Singh D., et al., arXiv preprint arXiv:2406.07245 (2024).
12. Shabbir A., Khan M., Ali S., et al. Key Engineering Materials 928, 163–175 (2022).
13. Jurkevičiūtė A., Baltrusaitis J., Petrauskas K., et al. Materials Chemistry and Physics 309, 128425 (2023).
14. Zhu W., Su Z., Guo J., et al. Diamond and Related Materials 122, 108820 (2022). https://doi.org/10.1016/j.diamond.2022.108820.
15. Zhao Z., Li X., Wang Y., et al., Optics Express 28, 15573-15586 (2020).
16. Morichetti F., Frontiers in Photonics 4, 1336510 (2024).
17. Javeed S., Yamin S., Janjua S.A., Yaqub K., Ashraf A., Zeeshan S., Mehmood M., Anwar-ul-Haq M., Ahmad Sh., Vacuum 86, 193–200 (2011). https://doi.org/10.1016/j.vacuum.2011.06.005.
18. Zhang Y., Wang Y., Wang S., Wei W., Ge X., Zhu B., Shao J., Wang Y. Coatings 10, 884 (2020). https://doi.org/10.3390/coatings10090884.
19. https://www.semicore.com/reference/sputtering-yields-reference.
20. Ferrari A. C., Robertson J., Phys. Rev. B 64, 075414 (2001). https://doi.org/10.1103/PhysRevB.64.075414.
21. Robertson J., Materials Science and Engineering P. 37, 129–281 (2002). https://doi.org/10.1016/S0927-796X(02)00005-0.
22. Ferrari A. C., Robertson J. Philosophical Transactions of the Royal Society A 362, 2477–2512 (2004). https://doi.org/10.1098/rsta.2004.1452.
23. Modabberasl A., Rashidi A., Shafiekhani A., et al., Carbon, 94, 485–493 (2015).
24. Ioffe A. F., Regel A. R., Progress in Semiconductors 4, 239 (1960).
25. Tautc Ja. Uspehi fizicheskih nauk , 94 (3), 501–534 (1968) [in Russian].
26. Kazancev S.G., Ovcharenko T.N., Voprosy jelektromehaniki 123, 41–50 (2011) [in Russian].
27. Tuinstra F., Koenig J. L., Journal of Chemical Physics 53 (3), 1126–1131 (1970). https://doi.org/10.1063/1.1674108.
Review
For citations:
Ryaguzov A.P., Assembayeva A.R., Guseinov N.R., Bekmurat F. ON THE TECHNOLOGY OF SYNTHESIS OF HYDROGENATED DIAMOND-LIKE THIN FILMS BY ION-PLASMA METHOD. Herald of the Kazakh-British Technical University. 2025;22(2):322-332. (In Russ.) https://doi.org/10.55452/1998-6688-2025-22-2-322-332