Preview

Herald of the Kazakh-British technical university

Advanced search

ON THE ISSUE OF COMPUTER MODELING OF NEURAL NETWORK OPTIMIZATION PROCESSES FOR DRYING CONCENTRATE

https://doi.org/10.55452/1998-6688-2025-22-1-59-73

Abstract

In the context of the aggravating environmental problems of the planet and the continuing to worsen global energy crisis, the role of optimizing systems increases, including by reducing energy consumption of production and, as a result, reducing the carbon load. This problem is also relevant for one of the flagships of the economy of Kazakhstan – the mining and processing sector. The purpose of the stated study is to study the possibility of optimizing one of the most energy-intensive stages of the beneficiation processing of ferrous ores – concentrate drying. In connection with economic aspects, the study was carried out on digital simulation models of the drying process of iron ore concentrate in BSA 3.5-27 drying drums developed by the authors in the Matlab visual modeling environment. The authors, based on the results of the conducted theoretical research and field experiments, constructed a model of the object under study with existing automation systems, proposed an adaptive optimizing process control system based on a neural network of radial basis functions. The value of gas consumption for obtaining a drying agent was chosen as a control criterion for the technological process. Based on the results of comparing the operation of digital models of the original concentrate drying system under study and the system with adaptive control, the quality of control was assessed. The obtained results can be applied to modernize the control systems for drying processes of beneficiation complexes of both iron ore mining and processing plants and other minerals using similar technologies.

About the Authors

M. Yu. Zarubin
Kostanay University of Engineering and Economics named after M. Dulatov
Russian Federation

 Candidate of Technical Sciences, Associate Professor 

 Kostanay 



A. O. Ismailov
Kostanay University of Engineering and Economics named after M. Dulatov
Russian Federation

 Candidate of Technical Sciences, Associate Professor 

 Kostanay 



V. R. Zarubina
Kostanay University of Engineering and Economics named after M. Dulatov
Kazakhstan

 Candidate of Economic Sciences, Associate Professor 

 Kostanay 



G. S. Ybytayeva
International Educational Corporation
Kazakhstan

PhD, Associate Professor 

Almaty 



Zh. Zh. Yessenkulova
Narxoz University
Kazakhstan

Candidate of Agricultural Sciences, Associate Professor 

Almaty 



References

1. Ob utverzhdenii Pravil perevozok gruzov zheleznodorozhnym transportom» Prikaz Ministra industrii i infrastrukturnogo razvitiya Respubliki Kazahstan ot 2 avgusta 2019 goda № 612. Zaregistrirovan v Ministerstve yusticii Respubliki Kazahstan 2 avgusta 2019 goda № 19188. https://adilet.zan.kz/rus/docs/V1900019188. [in Russian].

2. Munro M. and Mohajerani A. (2014) Marine Structures, vol. 40, pp. 193–224. https://doi.org/10.1016/j.marstruc.2014.11.004.

3. International Maritime Organization (IMO), Amendments (05-19) to the International Maritime Solid Bulk Cargoes (IMSBC) Code (on 1 January 2021) (MSC101/24Add.3), London, 2019. https://www.imo.org/en/OurWork/Safety/Pages/CargoesInBulk-default.aspx.

4. Isaenko G.E., Mikhailov V.G., Meshcheryakov N.S., Goryachko O.V. and Makavetskas A.R. (2023) Ferrous Metallurgy. Bulletin of Scientific, Technical and Economic Information, vol. 79, no. 3, pp. 200–206. https://doi.org/10.32339/0135-5910-2023-3-200-206.

5. Ljung A.L., Lundström T., Marjavaara B. and Tano K. (2011) International Journal of Heat and Mass Transfer, vol. 54, no. 17–18, pp. 3882-3890. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.040.

6. Sharma R. and Nimaje D. (2021) Drying Technology, vol. 39, pp. 1–10. https://doi.org/10.1080/07373937.2020.1863423. (in English).

7. Tekhnologicheskaya instrukciya AO «SSGPO» (ERG, 2020), 56 s. [in Russian].

8. Khramov A.N. and Subbotin M.Y. (2019) Bulletin of ZabSU, vol. 8. https://cyberleninka.ru/article/n/osobennosti-svoystv-rudnyh-kontsentratov-vliyayuschie-na-vybor-konstruktsii-barabannyh-sushilok.

9. Patra A.S., Makhija D., Mukherjee A.K., Tiwari R., Sahoo C.R. and Mohanty B. (2016) Powder Technology, vol. 287, pp. 43–50. http://dx.doi.org/10.1016%2Fj.powtec.2015.09.030.

10. Ogunniran O., Binner E., Sklavounos A., Robinson J.P. (2017) Chemical Engineering Science, vol. 165. https://doi.org/10.1016/j.ces.2017.03.003.

11. Souza A.S., de Souza Pinto T.C., Sarkis A.M., de Pádua T.F. and Béttega R. (2023) Chemical Industry and Chemical Engineering Quarterly, vol. 29, no. 3, pp. 189–200. https://doi.org/10.2298/CICEQ220208026S.

12. Mujumdar A.S. (2014) Handbook of Industrial Drying. https://doi.org/10.1201/b17208.

13. Benitta A.C., Jundika C.K., Agus P.S. and Arun S.M. (2021) Drying Technology, vol. 39, no. 11, pp. 1667–1684. https://doi.org/10.1080/07373937.2021.1907754.

14. Wu Z.H., Hu Y.J., Lee D.J., Mujumdar A.S. and Li Z.Y. (2010) Drying Technology, vol. 28, no. 7, pp. 834–842. https://doi.org/10.1080/07373937.2010.490485.

15. Nedelin S.V. (2021) Ferrous Metallurgy, Bulletin of Scientific, Technical and Economic Information, vol. 77, no. 8, pp. 936–942. https://doi.org/10.32339/0135-5910-2021-8-936-942.

16. Pikul Z. and Telichenko D. (2014) Information Science And Control Systems, vol. 1, no. 39, pp. 160–169. https://ics.pnu.edu.ru/journal/articles/963/en/.

17. Prozumentor I.V. (1983) Issledovanie processa sushki ugol’nyh i apatitovyh flotokoncentratov v barabannyh sushilkah i razrabotka ASU TP sushki. https://www.dissercat.com/content/issledovanie-protsessasushki-ugolnykh-i-apatitovykh-flotokontsentratov-v-barabannykh-sushi-0. [in Russian].

18. Stal’skij V.V., Storozhenko S.V. (1972) Mnogosvyaznaya sistema avtomaticheskogo upravleniya processom sushki fosforitovogo koncentrata, Zapiski Gornogo instituta. – vol. 1, no. 62, p. 31. https://pmi.spmi.ru/index.php/pmi/article/view/11755. [in Russian].

19. Zarubin M. (2016) Journal of Chemical Technology and Metallurgy, vol. 51, no. 4, pp. 473–482. https://journal.uctm.edu/node/j2016-4/16-Zarubin_p%20473-482.pdf.

20. Zarubin M. and Zarubina V. (2016) Energy procedia, vol. 95, pp. 512–516. https://doi.org/10.1016/j.egypro.2016.09.077.

21. Mhaskar H.N. and Michelli C.A. (2020) Advances in Applied Mathematics, vol. 13, no. 3, pp. 350–373. https://doi.org/10.1016/0196-8858(92)90016-P.

22. Bai Z.Z. and Wu W.T. (2019) Numerical Linear Algebra with Applications, vol. 26, e2237. https://doi.org/10.1002/nla.2237.


Review

For citations:


Zarubin M.Yu., Ismailov A.O., Zarubina V.R., Ybytayeva G.S., Yessenkulova Zh.Zh. ON THE ISSUE OF COMPUTER MODELING OF NEURAL NETWORK OPTIMIZATION PROCESSES FOR DRYING CONCENTRATE. Herald of the Kazakh-British technical university. 2025;22(1):59-73. (In Russ.) https://doi.org/10.55452/1998-6688-2025-22-1-59-73

Views: 127


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1998-6688 (Print)
ISSN 2959-8109 (Online)